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Abstract: The healthcare sector requires intelligent solutions to manage 

vast microarray data, but challenges like high dimensionality, data 

imbalance, and computational complexity persist. This study addresses 

these by handling imbalanced microarray cancer gene datasets using 

Synthetic Minority Oversampling Technique (SMOTE) and enhancing the 

Salp Swarm Algorithm (SSA) with sinusoidal chaotic map initialization 

for improved population and control parameter diversity. The enhanced 

SSA is combined with Chi-square and Mutual Information filter methods 

to select top-performing genes from Ovarian, Colon, and Leukemia 

datasets, followed by refinement based on minimal error. Key 

contributions include chaotic initialization for better exploration, SMOTE 

for balanced classification, and a novel minimal-error gene subset 

selection. Compared to state-of-the-art methods, our approach achieves 

competitive performance, with 100% accuracy and F1 score across datasets 

while reducing gene counts (e.g., 4 genes for Colon). This promises to 

enhance cancer diagnosis and treatment, enabling targeted therapies and 

personalized medicine for improved patient outcomes. 

Keywords: Salp Swarm Algorithm (SSA); Filter Methods; Microarray 

Cancer Gene Selection; Imbalance Data; High Dimensional Data  

1. Introduction 

Microarray gene expression analysis stands at the forefront of modern molecular biology, offering a 

broad view into the detailed mechanisms governing genetic activity [1,2]. It allows researchers to examine 
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the expression levels of thousands of genes simultaneously, unraveling the complex interplay between 

genetic material and cellular behavior [3].  However, amidst this wealth of data lies a daunting challenge: 

the need to discern signal from noise, and relevance from redundancy [4]. Here, microarray gene selection 

emerges as a valuable method, guiding researchers through the overwhelming path of gene expression 

profiles toward the identification of key attributes contributing to biological processes [5]. By strategically 

extracting vast arrays of genetic information into concise subsets of genes with predictive power, 

microarray gene selection not only illuminates the molecular underpinnings of diseases like cancer but also 

paves the way for targeted therapies and personalized medicine [6]. In this domain where precision is 

paramount and insights are invaluable, the quest for optimal gene subsets becomes not just a scientific 

endeavor but a transformative journey toward unlocking the mysteries encoded within our DNA. 

 Traditional methods such as brute force and heuristic approaches have been employed to tackle the 

microarray gene selection problem. However, despite their widespread use, these methods often fall short 

of providing optimal results [7]. Brute force methods exhaustively search through all possible combinations 

of genes, making them computationally expensive and impractical for high-dimensional datasets [29,50]. 

Additionally, they are prone to the curse of dimensionality, where the number of features increases 

exponentially with the dataset size, leading to sparse data distributions and increased computational 

complexity [8,9]. On the other hand, heuristic methods, while more computationally efficient, rely on 

predefined rules or strategies that may not always capture the intricate relationships and interactions present 

in biological datasets [10]. Overall, the limitations of these traditional methods highlight the need for more 

advanced and adaptable approaches to microarray gene selection. 

The introduction of statistical filter methods marked a significant advancement in microarray gene 

selection, offering a more systematic and data-driven approach compared to traditional methods. This filter 

methods operate by evaluating each feature independently based on statistical measures of relevance or 

importance [11,12]. For example, methods like Chi-square [13], Relief [14], and Mutual Information [15] 

quantify the association between each gene and the target variable, such as disease status. By ranking genes 

according to their statistical scores, filter methods can identify the most informative features for 

downstream analysis [16]. However, despite their simplicity and computational efficiency, statistical filter 

methods have notable limitations [17]. One major drawback is their inability to capture feature 

dependencies or interactions, as they assess genes in isolation. This can lead to the selection of redundant 

or irrelevant features, diminishing the effectiveness of subsequent analysis [18]. 

 To address this issue, wrapper methods have been introduced, which consider feature dependencies by 

evaluating subsets of genes rather than individual features. Unlike filter methods, wrapper methods assess 

the contribution of gene subsets collectively, taking into account feature interactions [19,20]. While 

wrapper methods offer greater flexibility and potentially higher accuracy compared to filter methods, they 

are computationally expensive, especially in high-dimensional datasets.  

Authors in [4] Considering these drawbacks, the advent of Swarm Intelligence (SI) algorithms 

revolutionized the field of Feature Selection (FS) by mimicking the collective behaviors of social organisms 

to find optimal solutions [21]. These algorithms, including the Salp Swarm Algorithm (SSA) [22] Particle 

Swarm Optimization (PSO) [23], Genetic Algorithm (GA), Ant Colony Optimization (ACO) [24], and Bat 

Algorithm (BA) [25] among others, operate on the principle of collaboration among individual agents to 

search the solution space efficiently. They have garnered widespread acceptance across various domains, 

ranging from engineering and civil engineering to biology and finance. In the context of microarray gene 

selection, SI algorithms have proven highly effective due to their ability to handle high-dimensional and 

complex datasets. These algorithms can efficiently explore the vast search space of gene combinations to 
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identify optimal subsets that best discriminate between different classes, such as cancer subtypes or 

treatment responses. Furthermore, SI algorithms offer advantages such as robustness to noise, adaptability 

to dynamic environments, and parallel processing capabilities, making them well-suited for addressing the 

challenges inherent in microarray data analysis [26]. 

 Among these SI algorithms, the SSA stands out for its simplicity, efficiency, and effectiveness in 

optimization tasks [27]. Inspired by the collective behavior of Salps, SSA employs simple rules for 

individual agents to adjust their positions based on local and global information exchange. This 

decentralized approach allows SSA to efficiently explore the solution space while maintaining diversity 

among solutions [28] 

 Nonetheless, despite its wide acceptance and recognition in solving large-scale optimization problems, 

SSA exhibits a limitation in its exploration ability, primarily attributed to the poor initialization of its 

population and control parameters using pseudo-random numbers [25]. This poor initialization hinders the 

algorithm's exploration capability, as it may lead to solutions trapped in local optima or premature 

convergence to suboptimal solutions [29]. Random initialization using pseudo-random numbers often 

results in sequences with discernible patterns or correlations, limiting the algorithm's ability to thoroughly 

explore the solution space [30]. 

 However, the use of Chaotic Maps (CM) has revolutionized this aspect of SSA by offering a more 

effective approach to initializing both population and control parameters [2,14]. CMs, renowned for their 

inherent unpredictability, generate diverse and irregular sequences of numbers that promote exploration of 

the solution space [2]. By leveraging CM for initialization, SSA can overcome the limitations of random 

initialization and enhance its global search ability. This integration of CM not only facilitates a more 

thorough exploration of the solution space but also improves the algorithm's convergence behavior and 

solution quality [31]. 

 Research endeavors are increasingly focusing on incorporating the strengths of filtering methods with 

the global search capabilities of SI algorithms to enhance the effectiveness of gene selection processes [9]. 

The integration of filtering methods and SI algorithms holds great promise in gene selection tasks. Filtering 

methods serve as effective preprocessing steps to identify promising gene subsets based on relevant criteria 

such as statistical significance or information gain [32]. These filtered subsets are then passed on to SI 

algorithms, which further explore the solution space to refine the selection and identify the most optimal 

gene subset. This combination leverages the strengths of both approaches, allowing for a more 

comprehensive search while mitigating the risk of getting stuck in local optima. 

 However, one of the challenges in this approach lies in determining the optimal size of the gene subset 

to pass to the SI algorithm after the filtering step. Selecting an inadequate subset size may limit the search 

space and overlook potentially relevant genes, leading to suboptimal solutions. Conversely, choosing an 

excessively large subset size may increase computational costs and hinder the efficiency of the SI algorithm. 

Thus, finding the right balance in subset size selection is crucial for maximizing the effectiveness of the 

combined filtering and SI approach in gene selection tasks. 

 Managing high-dimensional data is undoubtedly crucial; however, the challenge of dealing with 

imbalanced data is equally significant and requires attention. The issue of imbalanced data is prevalent in 

various domains, including microarray gene expression data, and poses significant challenges for Machine 

Learning (ML) algorithms. Imbalanced data occurs when the distribution of classes in a dataset is highly 

skewed, with one class (the minority class) being significantly underrepresented compared to the others 

(the majority class) [33]. This imbalance can arise due to various factors such as the natural scarcity of 
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certain events or errors in data collection processes. The imbalanced nature of the data can severely impact 

the performance of ML algorithms, particularly those designed to optimize overall accuracy [34]. In such 

scenarios, algorithms tend to exhibit a bias towards the majority class, leading to poor predictive 

performance for the minority class. As a result, the model may struggle to accurately identify and classify 

instances belonging to the minority class, which is often of greater interest in real-world applications, such 

as detecting rare diseases or identifying anomalies [35]. 

 To address the challenges posed by imbalanced data, researchers have developed various techniques 

aimed at rebalancing the class distribution and improving the performance of ML algorithms [54]. One 

common approach is resampling, which involves either oversampling the minority class or undersampling 

the majority class [3]. Additionally, synthetic data generation techniques, such as SMOTE (Synthetic 

Minority Over-sampling Technique), create synthetic instances for the minority class to balance the class 

distribution. Other techniques include cost-sensitive learning, where different misclassification costs are 

assigned to different classes to encourage the model to prioritize the correct classification of the minority 

class [36]. 

 The novelty of our approach lies in the synergistic integration of three components: (1) sinusoidal 

chaotic map initialization for both SSA population and control parameters, enhancing diversity and 

exploration to avoid local optima; (2) SMOTE for robust handling of imbalanced data, improving minority 

class prediction; and (3) a filter-based method selecting gene subsets with minimal error before chaotic 

SSA refinement, capturing comprehensive gene interactions. Unlike prior works [37], which used pseudo-

random initialization and fixed top-100 gene selection), this hybrid framework addresses high-

dimensionality and imbalance simultaneously, yielding superior accuracy and reduced gene counts. 

 Based on the preceding discussions, this paper aims to improve microarray gene selection by tackling 

the obstacles posed by high dimensionality and imbalanced data. It seeks to combine SSA with chi-square 

and mutual information filter methods, complemented by a chaotic map, to facilitate precise and effective 

gene subset identification. Furthermore, the study aims to introduce an approach for determining and 

selecting reduced gene subsets founded on minimal error. Through an emphasis on intricate gene 

interactions, the proposed methodology endeavors to heighten accuracy while minimizing gene subset 

dimensions. To achieve our overarching objective, we specifically undertake the following actions: 

1. Address the data imbalanced problem in microarray cancer gene datasets using the SMOTE technique. 

2. Develop a filter-based method for determining and selecting reduced and top-performing gene subsets 

based on minimum error. 

3. Design an enhanced initialization method for the SSA’s population and control parameters, integrating 

the sinusoidal chaotic map to improve the algorithm's convergence behavior and solution quality, for 

an improved gene selection task. 

4. Assess the effectiveness of the proposed approach in comparison to existing methods in the literature 

using benchmark Ovarian, Leukemia, and Colon cancer datasets with popular metrics such as accuracy, 

gene counts, F1-score, standard deviation, and error rate. 

 The subsequent sections of this paper are organized as follows: Section 2 offers background information 

and an in-depth literature review. Section 3 discusses the proposed approach. Section 4 details the 

experiments, comparisons, and analysis of results. Finally, Section 5 concludes with a summary of insights 

and prospects for future research. 
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2. Background 

 In this section, we present an overview of key concepts related to this research, including microarray 

data, dimensionality reduction, swarm intelligence algorithms, chaotic maps, imbalanced data, and machine 

learning algorithms. We also discuss state-of-the-art works in the literature relevant to this study. 

2.1 Microarray Data 

 Microarray data refers to an HD dataset generated by microarray technology; a powerful tool used in 

molecular biology to measure the expression levels of thousands of genes simultaneously [38]. This 

technology allows researchers to examine the expression patterns of genes under different conditions, such 

as disease states or drug treatments. Analyzing microarray data can provide valuable insights into gene 

function, and disease mechanisms. As outlined by [39], there are four primary steps involved in acquiring 

microarray data, which include cell analysis, genetic material separation, identification of relevant genes, 

and compilation of a list containing the identified genes. A depiction of these procedures is illustrated in 

Figure 1, providing a visual representation of the microarray analysis process. 

 

Figure 1: The microarray analysis process 

2.2 Features selection (FS) 

FS is a crucial step in ML and data analysis that involves identifying and selecting a subset of relevant 

features from the original dataset [40]. This process helps to reduce dimensionality, improve model 

performance, and enhance interpretability. There are three major types of FS techniques: filter methods, 

wrapper methods, and embedded methods. Figure 2 illustrates the core operations of FS. It commences 

with passing the complete feature set into the chosen FS technique, such as filter, wrapper, or embedded 

methods. Subsequently, a set of potentially optimal features is selected. Evaluation of the chosen feature 

subset is carried out using an ML algorithm to assess its effectiveness. This iterative process continues until 

a stopping criterion is satisfied, which may include reaching the maximum predefined number of iterations, 

achieving the desired performance level, reaching the maximum predefined runtime, maintaining a 

consistent accuracy level, or user intervention, among other factors. 
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Figure 2: The overall process of feature selection 

 

Filter methods evaluate the relevance of features independently of the learning algorithm. They typically 

rely on statistical measures, such as correlation, to rank features based on their predictive power [41]. These 

methods are computationally efficient and can handle HD datasets effectively. They are often used as a 

preprocessing step before applying more complex algorithms [42]. However, filter methods may overlook 

the interactions between features and their combined predictive power. Two of its most popular techniques 

include Mutual Information [43] and Chi-square [44]. 

𝑋𝑍𝑋Mutual information (MI) serves as a measure quantifying the correlation between two random 

variables, (representing the feature) and (indicating the associated class label), as elaborated by [15]. 

Originating from Shannon entropy principles, MI aims to gauge the level of uncertainty inherent in the 

distribution of events associated with feature. Lower entropy values denote reduced uncertainty when a 

particular event occurs more frequently. Conversely, when all events possess equal probabilities, entropy 

reaches its peak, indicating a lack of certainty regarding any specific outcome. Defined mathematically by 

[86] MI includes these concepts.  

 𝐼(𝑥; 𝑦) =  ∑ ∑ 𝑝(𝑥(𝑖), 𝑦(𝑗)).𝑛
𝑗=1

𝑛
𝑖=1 log (

𝑝(𝑥(𝑖),𝑦(𝑗))

𝑝(𝑥(𝑖)).𝑝(𝑦(𝑗))
)                                            (1) 

𝑥 𝑦𝑝(𝑥(𝑖), 𝑦(𝑗)) = 𝑝(𝑥(𝑖)). 𝑝(𝑦(𝑗)). When MI equals zero, it implies that variables and are statistically 

independent, meaning the joint probability equals the product of their probabilities i.e., Eq. (1) and (2) 

illustrate the linear connection between MI and the entropies of the variables. Figure 3 employs a Venn 

diagram to visually represent the interplay among these variables [45].   

𝐼(𝑥; 𝑦) =  {

𝐻(𝑥) − 𝐻(𝑥|𝑦)               

𝐻(𝑦) − 𝐻(𝑦|𝑥)               

𝐻(𝑥) + 𝐻(𝑦) − 𝐻(𝑥, 𝑦).

                                                            (2) 

 The conditions of each of the expressions holding are: 

1. 𝐼(𝑥; 𝑦) = 𝐻(𝑥) − 𝐻(𝑥|𝑦): Holds when MI between 𝑥 and 𝑦 equals the entropy of 𝑥 minus the 

conditional entropy of 𝑥 given 𝑦. 

2. 𝐼(𝑥; 𝑦) = 𝐻(𝑦) − 𝐻(𝑦|𝑥): Holds when MI between 𝑥 and 𝑦 equals the entropy of 𝑦 minus the 

conditional entropy of 𝑦 given 𝑥. 

3. 𝐼(𝑥; 𝑦) = 𝐻(𝑥) + 𝐻(𝑦) − 𝐻(𝑥, 𝑦): Holds when MI between 𝑥 and 𝑦 equals the sum of the 

entropies of 𝑥 of 𝑦 minus their joint entropy. 
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4. Suppose 𝑧 represents a discrete random variable. To assess its interaction with the other variables, 

𝑥 and 𝑦, conditional MI can be utilized. This measure is articulated as follows: 

 

Figure 3: Venn diagram showing how the entropies of the variables and MI are related 

𝐼(𝑥; 𝑦|𝑧) = ∑ 𝑝(𝑧(𝑖))𝐼(𝑥; 𝑦|𝑧 = 𝑧(𝑖))

𝑛

𝑖=1

                                                                 (3) 

𝐼(𝑥; 𝑦|𝑧 = 𝑧(𝑖))𝑥𝑦𝑧 = 𝑧(𝑖).where is the MI between and when Conditional mutual information enables 

the quantification of information between two variables within the context of a third variable, but it does 

not allow for the measurement of information among all three variables simultaneously. In addition, the MI 

filter approach has several advantages that help explain why it works well for FS. Its capacity to capture 

nonlinear interactions, independence on label labels, and lack of assumptions about linearity or distribution 

are a few of these important strengths [46]. 

𝑓 (𝑋2)According to [7], the chi-square statistic measures the degree of independence or interdependence 

between two categorical variables. In particular, it evaluates the departure from the expected distribution 

based on the supposition that the feature is not affected by the class label. The chi-square test was given a 

mathematical expression in [47], in which the anticipated range is split up into intervals. Eq. (4) is used to 

determine the feature chi-square value. 

𝑋2𝑓 = ∑ ∑
(𝑛𝑗𝑠 −  µ𝑗𝑠)2

µ𝑗𝑠

𝑐

𝑠=1

𝑟

𝑗=1

                                                                             (4) 

𝑟𝑐𝑛𝑗𝑠𝑗𝑡ℎ𝑠𝑡ℎµ𝑗𝑠 =
𝑛∗𝑠𝑛𝑗∗

𝑛
𝑛𝑗∗𝑗𝑡ℎ𝑛∗𝑠 𝑠

𝑡ℎIn this context, denotes the count of dissimilar values within the 

feature, represents the number of dissimilar values within a class, signifies the frequency of the element 

within the class, and, where   represents the frequency of the element, and indicates the total number of 

elements within the   class. In essence, higher chi-square values indicate increased significance or 

importance. Because of its many advantages, the Chi-Square filter method is a well-regarded option for FS 

in a variety of data-driven fields, including microarray analysis. Easy interpretability, nonparametric nature, 

robustness to outliers, simplicity, and efficiency are some of its main advantages [4] 

However, wrapper methods evaluate the performance of feature subsets by directly using a specific 

learning algorithm to train and evaluate models with different feature combinations. These methods search 

through the space of possible feature subsets using a predefined search strategy, such as forward selection, 

backward elimination, or exhaustive search. Wrapper methods can capture feature interactions and select 

subsets that are tailored to the learning algorithm. However, they are more computationally intensive and 

may be prone to overfitting, especially with large feature spaces [48]. Wrapper methods, particularly those 

employing SI techniques, have garnered significant attention in recent years for their efficacy in FS. These 
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methods harness the collective behavior of agents inspired by natural phenomena like the flocking of birds 

or the foraging of ants to optimize feature subsets. Among the most trending SI wrapper methods is the 

SSA. These methods iteratively explore the feature space, dynamically adjusting feature subsets to improve 

classification performance based on feedback from a specified evaluation criterion as exhibited in Figure 

4. Its ability to efficiently navigate complex search spaces and identify relevant features makes it highly 

attractive for various applications, including bioinformatics, image processing, and financial analysis. 

 

Figure 4: Operational principle of SI algorithms 

 Embedded methods incorporate FS into the model-building process itself. These methods typically use 

regularization techniques, such as Lasso regression or decision tree pruning, to simultaneously learn the 

model and select relevant features [49]. By integrating FS directly into the learning algorithm, embedded 

methods can automatically identify the most important features while building the model. This approach 

often leads to more robust and interpretable models. Embedded methods strike a balance between the 

efficiency of filter methods and the effectiveness of wrapper methods. They are particularly useful for 

datasets with a large number of features and limited computational resources [50]. 

2.3 Salp Swarm Algorithm (SSA) 

Salps are cylindrical-bodied marine animals that are known to live in groups or chains in the ocean while 

purposefully drifting. Research has shown that Salp swarms can locate food more efficiently and 

accomplish greater mobility [51]. The idea of SSA was first presented by and has been applied to several 

optimization issues. To find the target or food supply and navigate the search space, all salps in SSA 

assemble into a structure resembling a chain. The swarm is split into two components to quantitatively 

depict the chain generation of salps: the leader and the followers. Always taking the lead, the leader Salp 

directs the other members in the chain. 

Consider a collection of 𝑛 Salps denoted as 𝑌 =  {𝑌1, 𝑌2, . . . , 𝑌𝑖 , . . . . 𝑌𝑛  }. Each Salp is presented as a d-

dimensional vector (𝑌𝑖 =  𝑦1, 𝑦2, . . . , 𝑦𝑑). 𝐹𝑠 represents the target vector or food source. Salp's leadership 

status is updated following Eq. (5). 

                𝑌𝑖 {
𝐹𝑠 +  𝛼1((𝑌𝑚𝑎𝑥 −  𝑌𝑚𝑖𝑛)𝛼2 + 𝑌min) 𝛼3 ≥ 0.5

𝐹𝑠 −  𝛼1 ((𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛)𝛼2 +  𝑌𝑚𝑖𝑛) 𝛼3 < 0.5
                                      (5) 

With 𝑌i  denoting the leading Salp's location, we have random values 𝛼1, 𝛼2, and 𝛼3 in this 

configuration. The upper and lower bounds for each Salp are indicated by the variables 𝑌𝑚𝑎𝑥 , and 𝑌𝑚𝑖𝑛 

respectively. In SSA, 𝛼1 controls the ratio of exploration to exploitation, and Eq. (6) is used to change its 

value at each cycle. 

                                     𝛼1 =  2𝑒
−(

4∗𝑐𝑖𝑡𝑒𝑟
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

)2

                                                                      (6) 
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The variables 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 and 𝑐𝑖𝑡𝑒𝑟  in this context denote the total number of iterations and the current 

iteration, respectively. Using Newton's law of motion, the positions of the follower Salps aside from 𝑌1 are 

improved, as outlined in Eq. (7). 

                                      𝑌𝑗(𝑖) =  
1

2
𝑎𝑡2 +  𝑣𝑜𝑡                                                                    (7)  

In this case, 𝑗 can be any value between 2 and 𝑛, and 𝑌𝑗(𝑖) denotes the 𝑖𝑡ℎ dimension of the 𝑗𝑡ℎ Salp. 

The initial velocity, time, and acceleration are represented by 𝑣𝑜, 𝑡, and 𝑎 respectively, and are computed 

using Eq. (8). 

𝑎 =  
𝑣𝑒𝑛𝑑

𝑣𝑜
 𝑤ℎ𝑒𝑟𝑒 𝑣= 

𝑦− 𝑦𝑜

𝑡
                                                      (8) 

The initial velocity is set to 0 and the term "time" denotes the number of iterations in the context of 

optimization issues. As a result, the followers' positions are updated using a modified equation given in Eq. 

(9). 

                                𝑌𝑗(𝑖) =  
1

2
 (𝑌𝑗(𝑖)  +  𝑌𝐽−1(𝑖)                                                               (9)   

According to Eq. (9), 𝑖 must be assigned a value of 𝑖 ≥  2, indicating it represents a follower; 

conversely, a value of 1 signifies it is a leader. The Salp that best fits the situation is chosen as the food 

supply, where the initial population is created at random. After that, the remaining salps move near this 

food source. With every iteration, the food source (𝐹𝑠) position is updated. 

2.4 Chaotic maps 

Chaotic maps have gained attention in the field of SI as an effective method for initializing the search 

process [14]. These maps introduce an element of randomness and complexity into the initial positions of 

swarm individuals, such as particles in PSO or agents in Artificial Bee Colony (ABC) algorithms [23]. This 

initialization strategy aims to enhance the exploration capability of SI algorithms by introducing 

unpredictable, yet controlled, behaviors at the start of the optimization process [14]. Chaotic maps exhibit 

sensitive dependence on initial conditions, which means that small variations in the initial positions can 

lead to significantly different trajectories. This property is harnessed to ensure diverse exploration of the 

search space, helping SI algorithms avoid local optima and discover more promising solutions [11]. 

Therefore, chaotic map-based initialization methods have become valuable tools for improving the 

performance and robustness of SI algorithms in various optimization tasks. Examples of chaotic maps 

include the Logistic map, sine map, tent map, iterative map, sinusoidal map, and singer map [52]. 

 The sinusoidal chaotic map is a mathematical function used in chaotic systems and dynamic systems 

theory. It is characterized by its sinusoidal nature, which introduces nonlinearity and unpredictability into 

the system. The map iterates a given initial value through a series of calculations involving sine functions, 

resulting in a sequence of values that exhibit chaotic behavior. This chaotic map has been employed in 

various fields, including cryptography and optimization algorithms. Its unique properties make it suitable 

for applications where randomness and complexity are desired, such as in the initialization of optimization 

algorithms like the SSA for solving optimization problems efficiently. The sinusoidal map is defined as in 

Eq. (10) 

 𝑥𝑘+1 = 𝑃. 𝑥𝑘
2sin (𝜋𝑥𝑘)                                                                    (10) 

where  𝑥𝑘  is the current value,  𝑥𝑘+1  represents the next value, 𝑃 stands for the controlling parameter 

for the chaotic map. The  sin (𝜋𝑥𝑘)  represents the sine function 
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2.4 Imbalanced data 

Imbalanced data refers to datasets where the distribution of classes or categories is heavily skewed, with 

one or more classes significantly outnumbering others [53]. This imbalance poses challenges for ML 

algorithms, as they tend to be biased towards the majority class, leading to suboptimal performance in 

predicting the minority class. Imbalanced data can be categorized into two basic types: algorithm-driven 

approaches and data-driven approaches. Both approaches have their advantages and limitations, and the 

choice between them depends on factors such as the specific characteristics of the dataset, computational 

resources available, and the desired balance between predictive performance and interpretability [54]. 

Ultimately, addressing imbalanced data is crucial for building robust and reliable ML models in various 

domains, including healthcare, finance, and fraud detection. The resampling (random over and under 

sampling) and SMOTE techniques are the two most common data imbalance handling techniques. 

2.4.1 Algorithm-driven approach 

 Algorithm-driven approaches involve modifying the learning algorithm to handle class imbalance more 

effectively [3]. Techniques such as cost-sensitive learning, where misclassification costs are adjusted to 

penalize errors on the minority class more heavily, fall under this category [3]. Another approach is to use 

ensemble methods like bagging and boosting, which combine multiple models to improve predictive 

performance on imbalanced datasets. 

2.4.2 Data-driven approach 

 On the other hand, data-driven approaches focus on modifying the dataset itself to rebalance the class 

distribution [83]. One common method is resampling, which involves either oversampling the minority 

class to increase its representation or under-sampling the majority class to reduce its dominance [55]. 

Oversampling techniques include Random Oversampling and Synthetic Minority Over-sampling 

Technique (SMOTE), while under sampling methods include Random under sampling and Near Miss [56]. 

2.4.3 Oversampling 

 This technique involves increasing the number of instances in the minority class to match the majority 

class [80]. While ROS is simple and easy to implement, it can lead to overfitting and does not introduce 

new information.  

2.4.4 Under sampling 

 Conversely, under sampling reduces the number of instances in the majority class to balance class 

distributions [80]. Random Under sampling (RUS) randomly removes instances from the majority class 

until the class balance is achieved. While under sampling can help reduce computational complexity and 

processing time, it may lead to loss of valuable information present in the majority class, resulting in 

underfitting and reduced model performance [13]. 

2.4.5 SMOTE (Synthetic Minority Over-sampling Technique) 

 SMOTE is a popular oversampling technique designed to address the limitations of simple oversampling 

methods like ROS [13]. Instead of replicating minority class instances, SMOTE generates synthetic 

instances by interpolating between existing minority class samples [13]. It selects a random minority class 

instance and then selects its k nearest neighbors. A new instance is then generated by selecting a random 
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point along the line connecting the chosen instance and one of its neighbors [57]. This process is repeated 

until the desired balance between the minority and majority classes is achieved. 

2.5 Related works 

This section provides an overview of recent and pertinent literature relevant to the present study. Firstly, 

it examines discussions on research endeavors that combine the filtering strengths of filter methods with 

the global search capabilities of SI algorithms to tackle microarray gene selection challenges. This discourse 

extends beyond the Salp Swarm Algorithm to include other prominent SI algorithms documented in the 

literature, such as Particle Swarm Optimization (PSO), Genetic Algorithms (GA), and Month Flame 

Optimization (MFO), among others. Secondly, it delves into literature exploring enhancements in SI 

algorithms' initialization through the integration of chaotic maps. Lastly, the section addresses recent 

studies focused on addressing imbalanced data challenges inherent in microarray cancer datasets. 

2.5.1 Filter-based SI methods for microarray gene selection 

 In the field of bioinformatics, the utilization of filter-based FS methods for microarray gene selection 

has emerged as a pivotal area of research. Microarray technology has revolutionized our ability to analyze 

gene expression data on a large scale, offering invaluable insights into complex biological processes. Within 

this context, filter-based FS methods play a crucial role in identifying informative genes amidst vast 

datasets, facilitating the extraction of meaningful biological knowledge. This literature review aims to 

explore the landscape of filter-based FS techniques tailored specifically for microarray gene selection, 

delving into their methodologies and applications, in advancing our understanding of biological systems. 

[20] introduced a gene selection approach for multiple HD microarray cancer datasets. They combined the 

Relief, Correlation, ANOVA, Information Gain (IG), and IG gain ratio filter methods in a technique termed 

TOPSIS to select top genes. These selected genes were then subjected to the Jaya Algorithm (JA) for final 

refinement. For classification, the NB machine learning algorithm was employed. The TOPSIS technique 

was found to be 10 times faster than the compared methods. However, the model may suffer from issues 

related to scalability compounded by the time required to evaluate each alternative solution (combination 

of features). This is due to the increasing computational complexity, larger search space, potential 

convergence challenges, higher resource consumption, and longer evaluation times as the problem size 

grows. These factors can limit the practical applicability of the method to large-scale feature selection 

problems, especially in microarray datasets. [21] introduced a gene selection technique that merges 

Conditional Mutual Information (CMI) with Moth Flame Optimization (MFO). They utilized multiple HD 

microarray cancer gene datasets as benchmark datasets and employed SVM as the classifier. The integration 

of CMI with MFO offers a unique approach to gene selection with benefits such as enhanced feature 

relevance and improved convergence. However, the traditional MFO for feature selection suffers from slow 

convergence, premature convergence, and limited exploration in high-dimensional spaces, often requiring 

careful parameter tuning and facing scalability challenges with large datasets. Additionally, no effort was 

taken to rectify the severe imbalance present in most of the datasets employed in the study. This has 

significantly affected their model's efficacy and overall generalizability.  

 Authors in [7] conducted a study employing three filter methods i.e. Chi-Square, Information gain, and 

Relief F for initial gene selection across six microarray cancer datasets. Each of the filter methods was 

employed to independently select and rank the top-performing genes based on their scores. Next, using the 

mean of the scores, the gene scores from each filter are combined into a single gene ranking list. Following 

this preliminary selection, the final subset of selected genes underwent further refinement through PSO. 
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For classification tasks, the study utilized three ML algorithms: Decision Tree (DT), K-Nearest Neighbor 

(KNN), Support Vector Machine (SVM), and Naïve Bayes (NB). Nevertheless, no effort was taken to 

rectify the severe imbalance present in four of the six datasets included in the study. This has significantly 

affected their model's efficacy and generalizability. [42], employed SSA in combination with the Chi-

Square and Mutual Information filter methods for gene selection in microarray cancer datasets of Ovarian 

and Colon cancers. Referred to as the combination approach, the authors strategically combined the top 

genes selected from each filter method, selecting only the top 100 best-performing genes, which were then 

passed to the SSA for further intelligent selection. The learning algorithm utilized was KNN. Experimental 

results revealed that when applied to the Ovarian cancer dataset, their method achieved an accuracy and F1 

score of 98.00% and 97.00% respectively. Similarly, for the Colon cancer dataset, the method achieved 

accuracy and F1 scores of 94.20% and 93.60% respectively, all while significantly reducing the number of 

genes.  

2.5.2 SI initialization enhancement using chaotic maps 

In the literature, several chaotic maps like sine, tent, logistic, and sinusoidal, among others, have been 

utilized to initialize both the population and various control parameters of MAs. This approach aims to 

enhance the convergence of solutions towards optimality. For example, [11] employed the Grasshopper 

Optimization Algorithm (GOA) in conjunction with ten chaotic maps. Each chaotic map was utilized to 

initialize the 𝑐1 and 𝑐2 control parameters of the GOA. However, their models were evaluated on 10 

benchmark test functions rather than on a FS task.  Authors in [58] introduced a binary chaotic GA for FS, 

utilizing ten different chaotic maps to initialize the population and mutation operators of the GA. Their 

method was evaluated using two large healthcare datasets with extensive feature spaces, demonstrating 

promising performance in identifying optimal feature subsets with improved fitness values. However, the 

algorithm's effectiveness in the exploration and exploitation phases, particularly in dynamic search spaces 

where chaotic behavior might offer additional benefits, may be limited by the study's restriction of the use 

of chaotic maps to only the mutation and population initialization stages. This could potentially limit the 

algorithm's ability to fully leverage chaotic dynamics throughout the optimization process. 

 In their study, [27] proposed an enhanced version of the Reptile Search Algorithm (RSA) by integrating 

it with the Simulated Annealing (SA) local search technique to improve its exploitation capabilities. 

Additionally, they employed the circle map chaotic map for population initialization to enhance RSA's 

solution diversity. Their approach was evaluated using more than 20 medical datasets sourced from the 

University of California in Irvine (UCI) repository. The findings demonstrated the superiority of IRSA over 

the original RSA algorithm and other optimized algorithms across the majority of the medical datasets. 

Nonetheless, the study restricted the use of the circle map chaotic map to only the population initialization 

stage. By doing this, the algorithm may not be able to fully leverage chaotic dynamics throughout the 

optimization process. This could limit the algorithm's effectiveness in the exploration and exploitation 

phases, particularly in dynamic search spaces where chaotic behavior might offer additional benefits. 

Recently, [43] introduced an enhanced version of the Sparrow Search Algorithm (SSA) by integrating 10 

chaotic maps to enhance the algorithm's overall efficacy. Their improvements targeted three key aspects of 

SSA. Firstly, they optimized population initialization to enhance diversity and convergence among search 

agents. Secondly, chaotic maps were utilized to initialize two critical random numbers governing SSA's 

convergence. Lastly, these chaotic maps were employed to confine sparrows within the search range. 

Performance evaluation conducted on benchmark datasets from the UCI repository, three microarray cancer 

datasets, and standard benchmark test functions showcased the method's effectiveness compared to existing 
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literature studies. However, the study does not fully discuss how each chaotic map contributes to the overall 

improvement in SSA's performance, which makes it difficult to determine the precise effect of each chaotic 

map on the optimization process and may further hinder opportunities to optimize the algorithm's 

parameters for improved performance.  

2.5.3 Imbalance data handling for microarray gene selection 

 In this section, we delve into strategies to address the imbalanced nature of microarray datasets, crucial 

for effective gene selection. Techniques such as RUS, ROS, and SMOTE are explored to mitigate class 

imbalances, enhancing the performance of gene selection algorithms. For example, in [59] introduced a 

Wasserstein Generative Adversarial Network (WGAN) approach to mitigate imbalanced learning 

challenges across three HD cancer datasets and facilitate subsequent classification. The WGAN facilitates 

the generation of new samples from the minority class, effectively addressing the imbalance issue at the 

data level. The results indicated that achieving a balanced data distribution and expanding the sample size 

significantly improved prediction accuracy across all three datasets compared to conventional RUS and 

ROS techniques. Nonetheless, because deep learning-based methods like WGAN rely heavily on computer 

resources, researchers with limited computational capabilities may find it more difficult to use. 

Furthermore, even though WGANs show promise in addressing data imbalance and investigating data 

features, problems with model interpretability and generalization may still arise, especially in complicated 

and diverse cancer gene expression datasets. 

 Authors in [13] applied various supervised ML algorithms, including SVM, DT, KNN, NB, and MLP, 

for the classification of a multiclass lung cancer dataset. The dataset comprised four classes with instance 

percentages of 0.68, 0.08, 0.02, 0.10, and 0.09 for each class. To mitigate imbalanced class distribution, the 

authors employed ROS, RUS, and SMOTE. Comparative analysis revealed significant enhancement in the 

predictive capabilities of the supervised learning algorithms following dataset resampling, with the SVM-

SMOTE model demonstrating superior performance. The analysis, however, is restricted to a single, very 

specific lung cancer dataset, which may limit the findings' generalizability to other datasets or domains and 

raise doubts about the suggested method's resilience and suitability in a range of data types and clinical 

settings. Authors in [60] employed the SMOTE to address the imbalanced nature inherent in seven HD 

microarray cancer datasets. Subsequently, they applied Principal Component Analysis (PCA) as a DR 

technique to reduce the dimensions of these datasets before subjecting them to six supervised ML 

algorithms, each evaluated using 5-fold cross-validation, for the classification of cancer types into distinct 

classes. The study did not, however, assess how well the SMOTE technique performed in comparison to 

other popular resampling techniques for unbalanced data. Furthermore, a detailed analysis of the effects of 

various parameter settings or modifications to the SMOTE approach, like altering the value of K, is lacking. 

3. Proposed gene selection method 

This section proceeds by elaborating on the specific design and implementation aspects of the proposed 

gene selection method. It encompasses discussions on various components, including the utilization of 

chaotic methods for the SSA population and the 𝛼2 and 𝑐3 initialization. Additionally, it outlines the 

Transfer Function (TF) employed for converting continuous values to binary, the fitness function utilized 

for evaluating the selected gene subsets, and the evaluation metrics employed. Furthermore, it provides 

insights into the microarray cancer datasets utilized, and the chosen learning algorithm, and presents a 

detailed description of the proposed method's architecture, encompassing materials, parameters, and 

settings. Additionally, it outlines the design procedure for conducting experiments and presenting results. 
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3.1 Chaotic method of SSA initialization 

In this study, we have adopted the Sinusoidal chaotic map for initializing both the SSA population and 

the 𝛼2 and 𝛼3  control parameters. The Sinusoidal chaotic map has demonstrated superior effectiveness in 

microarray gene selection by generating sequences of numbers characterized by intricate and unpredictable 

behaviors, driven by sensitivity to initial conditions [61]. This contrast with the use of pseudo-random 

numbers allows for a more comprehensive exploration of the solution space, facilitating the discovery of 

potential solutions and mitigating the risk of being trapped in local optima. Moreover, employing the 

Sinusoidal chaotic map for initializing the parameters of SSA achieves a balanced approach between 

exploration and exploitation, dynamically adapting to the difficulties of the optimization problem, which 

surpasses the capabilities of traditional pseudo-random initialization methods 

3.2 Transfer function 

 This study utilizes the sigmoid TF to convert continuous values into binary representations, as 

introduced by [45]. The sigmoid TF is a member of the S-shape TF family and is selected for its 

straightforward interpretation in terms of probability or likelihood, along with its robustness against noise 

and outliers. It serves to differentiate between selected and non-selected genes effectively. Mathematically, 

the sigmoid TF is expressed as follows: 

𝑆(𝑥𝑖
𝑑) =

1

1+𝑒−𝑥𝑖
𝑑                                                                                 (11) 

𝑥𝑖
𝑑 = {

1, 𝑖𝑓 𝑆(𝑥𝑖
𝑑)  >  ⍺,

0, and𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                     (12) 

where ⍺ ~ 𝑈(0,1), 𝑥ꞓℝ denotes the possible solution and 𝑑 stands for the gene’s continuous value at a 

time.  

3.3  Fitness function 

 The fitness function is a mathematical technique used for evaluating the fitness of the SSA’s solution. 

It provides candidate solutions with a fitness score based on how effective it is in satisfying the objectives 

of the optimization task. Equation 13 presents the fitness function employed in this work [39]: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝛼∆𝑅(𝐷) + 𝛽
|𝑌|

|𝑇|
                                             (13) 

where ∆𝑅(𝐷) is the error rate of the classifier. |𝑌| is the size of the chosen feature subset and |𝑇| is the 

total number of features in the dataset. The ′𝛼′ ∈ [0,1] is the classifier’s error rate's weight. ′𝛽′ = (1 − 𝛼) 

is the significance of the features reduction. 

3.4  Datasets description 

 Table 1 displays the three microarray cancer datasets utilized in this study, providing a comprehensive 

breakdown of their dimensions [38]. These datasets are publicly available and play a vital role in providing 

a standardized framework for evaluating algorithms, fostering reproducibility, ensuring real-world 

relevance, enabling performance comparison, and promoting collaboration among researchers and 

practitioners. These datasets are designed for binary classification, meaning instances are categorized as 

either cancerous or non-cancerous. 

Table 1: Description of the three microarray cancer datasets used 

Datasets No. Instances No. Features No. Class 
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Colon Cancer 62 2000 2 (40,22) 

Leukemia Cancer 72 3572 2 (25,27) 

Ovarian Cancer 253 15155 (162,91) 

3.5  Imbalanced data handling 

 Examining the microarray cancer datasets utilized in this research, as depicted in Table 1, it is evident 

that both the Ovarian and Colon cancer datasets exhibit an imbalance, with a class ratio of nearly 2:1 for 

cancerous and non-cancerous instances. These result in several problems such as biased model performance 

toward the majority class, poor generalization to unseen data, misleading evaluation metrics such as 

accuracy, increased false negatives, and model skewness towards the majority class [13,59]. Thus, in this 

study, the SMOTE technique of imbalanced data handling is employed to address these issues. 

 The basic idea behind SMOTE involves generating synthetic samples by interpolating between existing 

minority class samples. Given a minority class sample 𝑥𝑖, SMOTE selects one of its k-neighbors 𝑥𝑧𝑖 and 

generates a synthetic sample 𝑥𝑛𝑒𝑤 by combining 𝑥𝑖 and 𝑥𝑧𝑖 according to the formula:  

𝑥𝑛𝑒𝑤 = 𝑥𝑖 +  𝜆 ∗ (𝑥𝑧𝑖 − 𝑥𝑖)                                                              (14) 

where λ is a random value between 0 and 1. This process is repeated for each minority class sample to 

create synthetic samples, thereby balancing the class distribution. 

4.  Proposed Gene selection method 

 Figure 5 presents the overall system architecture of the proposed gene selection method. The architecture 

is divided into four distinct stages aimed at selecting an optimal gene subset. These stages include: 

 Stage1: Preliminary data pre-processing 

 Stage2: Data imbalance handling using SMOTE 

 Stage3: Filter-based method to determine and select gene subsets with minimal error  

 Stage4: Chaotic SSA Initialization 

4.1 Preliminary data pre-processing 

 In this stage, we conduct target variable encoding, data normalization, and data cleaning on the 

microarray cancer datasets utilized. These steps aim to enhance the effectiveness of the learning algorithm 

i.e., the KNN which relies on distance metrics, mitigates bias towards specific genes, and facilitates easier 

data analysis. 
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Figure 5: The proposed system architecture 

4.2 Data imbalance handling using SMOTE  

 After the employed datasets are preprocessed from the first stage, the SMOTE technique is applied to 

address the imbalanced nature of the data. This technique generates synthetic samples for the minority class 

to balance the class distribution and improve the performance of the learning algorithms. Note that only the 

Ovarian and Colon cancer datasets are considered as imbalanced in this study.   

4.3 Filter-based method to determine and select gene subsets with minimal error  

 In the study by [42], both the Chi-Square and MI filter methods were individually applied to microarray 

cancer datasets to select the top 100 best-performing genes. Subsequently, the selected genes were merged, 

and duplicates with lower scores were eliminated, resulting in a final selection of the top 100 genes for 

further selection using SSA. Although this approach yielded a reduced number of selected genes with 

reasonably accurate classification, it may have overlooked crucial disease-relevant information, potentially 

leading to suboptimal results.  

 In contrast, our proposed method expands the selection of genes from each filter method to 1000 based 

on previous studies demonstrating good classification performance with subsets of even fewer than 1000 

genes [9,38]. Hence, we contend that it is likely that the few best-performing genes to be selected in 

subsequent stages should be included therein. After merging the 1000 genes from each filter method to 

create a subset of 2000 genes, duplicates were resolved by retaining the gene with the higher score. 

Additionally, our method introduces a hyperparameter 'n' to determine multiple gene subsets of various 

predetermined sizes from the reduced gene subset. This is denoted as 'TopG_n' in Figure 3. For instance, n 

= 5, which means five gene subsets with different predetermined sizes. Subsequently, error rates for each 

gene subset are computed using the proposed learning algorithm, and the subset with the minimal error rate 

is automatically chosen for further selection by the chaotic SSA algorithm. This approach addresses the 

limitations of [42] by ensuring a more comprehensive selection of genes, considering potential 

dependencies and interactions among genes, and ultimately aiming for improved performance 
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4.4 Chaotic SSA initialization 

 In this study, the sinusoidal chaotic map will serve a dual purpose in initializing the population of Salps 

and determining the values of the 𝛼2 𝑎𝑛𝑑 𝛼3 control parameters. The sinusoidal map's unique properties, 

characterized by its sensitivity to initial conditions and unpredictability, make it an ideal choice for 

introducing diversity and complexity into the initial population of Salps. Moreover, its application in 

initializing control parameters ensures adaptability and exploration in the optimization process. By 

leveraging the sinusoidal map for both population initialization and control parameter assignment, this 

study aims to enhance the exploration capability and convergence speed of the SSA, ultimately improving 

its performance in solving HD microarray gene selection problems. Algorithm 1 shows the sinusoidal 

chaotic map-based SSA initialization. 

4.5 Evaluation metrics 

 To evaluate the efficacy of the proposed gene selection method in comparison with other methods, the 

following metrics will be used accordingly. 

1. Classification accuracy: measures the overall correctness of the model's predictions by calculating 

the proportion of correctly classified instances out of the total number of instances in the dataset. 

2. Error rate: represents the proportion of incorrectly classified instances with the total number of 

instances in the dataset. 

3. F1-Score: The F1 score is often considered one of the best metrics for evaluating performance in 

imbalanced datasets because it considers both precision and recall, enabling a balanced assessment 

of its predictive capabilities 

4. Selected Gene Count: returns the number of selected genes by fittest candidate solution. 

5. Standard Deviation (SD): quantifies the amount of variation or dispersion in a dataset. 

Algorithm 1: Sinusoidal-Chaotic Salp Swarm Optimization 

Input: population of salps 𝑁 ; Max_iter, sinusoidal map parameters i.e initial value (𝑥0) and control parameter 

𝑃 

𝐹(𝑥): objective function 

Output: 𝐹𝑆: best solution; 

Generate the initial population (𝑌𝑖), where 𝑖 = 1,2, . . . , 𝑁  using Sinusoidal-chaotic initialization Eq. (2.11) 

t = 0; 

While (𝑡 <  𝑀𝑎𝑥_𝑖𝑡𝑒𝑟) do 

 Compute Salp’s fitness and find the current best  

 Calculate 𝛼1 using Eq. (2.7) 

  For each Salp (𝑌𝑖) In the chain do 

 if (𝑗 == 1) then 

 Modify the position of leader Salp using Eq. (2.6) 

 Else 

 Modify locations of followers Salps according to Eq. (2.10) 

 end if 

 end for 

 𝑡 =  𝑡 +  1  

end while  
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4.6 Parameters values and settings 

Table 2 outlines the parameter values and configurations employed in our proposed gene selection 

methodology. Parameters related to SSA, including population size and the number of iterations, were 

established in line with the settings used by [42] to ensure a fair comparison. Note that the SSA does not 

have an additional parameter that needs initialization aside from the α1, α2, and α3. The parameter values 

for the sinusoidal map, such as the initial start value and control parameter, were selected based on the 

approaches outlined by [11] and [62].  Additionally, other settings, including the search boundary, value in 

KNN, value of cross-validation, and alpha-beta values in the fitness function, were determined based on 

widely recognized values from various literature sources over the years.  

Table 2: Parameters values and settings for the proposed method 

 Hyperparameters Parameter values 

 

k-fold cross validation 10 

′𝛼′ 0.99 

′𝛽′ 0.01 

Dimension (𝐷) Gene count in datasets 

𝐾 value in KNN 5 

Search boundary 0 -1 

Number of runs (𝑃) 10 

Sinusoidal 
𝑥0 0.7 

𝑃 2.3 

   

SSA 

Population Size 20 

Number of generation/iterations 20 

α2, and α3 Chaotic initialization 

 

4.7  Experimental design and result presentation 

 The experiments and result presentation in this study will be conducted in two distinct forms.  

i. Firstly, concerning the hyperparameter ‘𝑛’ which will subsequently be compared to determine 

the superior performing approach. i.e. 

a) ‘𝑛’ will be initialized to 5, with gene counts 100, 200, 300, 400, and 500 respectively. 

b) ′𝑛′ will be initialized to 10, with gene counts 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 

 Secondly, the method from (i) demonstrating the best performance will then undergo further evaluation 

against existing studies in the literature to assess its efficacy and relevance in the broader context of the 

research. 

5 Results analysis and discussion 

 All experiments in this study are carried out using the Python programming language within a Jupyter 

Notebook integrated development environment. The experiments are executed on a computer equipped 

with an Intel(R) Core (TM) i7-6600U CPU running at 2.80 GHz and 8.00 GB of RAM. This section presents 

the results of the experiments conducted following the experimental design outlined in prior section. We 
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explored two values of the ′𝑛′ parameter, namely 5 and 10, each representing subsets with varying numbers 

of genes. It is important to note that the selection of these ′𝑛′ values was intuitive and not based on existing 

literature, suggesting potential avenues for future research exploring different ′𝑛′ values and corresponding 

gene counts. Subsequently, the ′𝑛′ value demonstrating superior performance based on the utilized metrics 

was chosen for comparison with existing literature. 

5.1 Comparing the performance of the proposed method with two values of 'n' 

 In the discussion of the results obtained from experiments conducted with different values of ′𝑛′ across 

three benchmark datasets (Ovarian, Colon, and Leukemia), Table 3 demonstrates notable variations in 

performance metrics and selected gene counts. Note that results with better performance are presented in 

bold. Starting with the Ovarian dataset, it is evident that setting ′𝑛′ to 10 led to superior results across all 

metrics compared to ′𝑛′ set to 5. Despite achieving perfect scores in accuracy, F1 score, and error rates for 

both '𝑛′ values, the model selected significantly fewer genes (46) when ′𝑛′ was set to 10, in contrast to 95 

genes with 'n' set to 5. This suggests that while subsets with smaller gene counts failed to achieve improved 

error rates, the model's decision with ′𝑛′ = 10 reflects a balance between minimal gene counts and enhanced 

gene classification accuracy. 

 Similarly, for the Colon cancer dataset, the model achieved perfect accuracy, F1 score, and error rates with 

both ′𝑛′ values, but notably selected fewer genes (4) when ′𝑛′ was set to 10 compared to 48 genes with ′𝑛′ 

set to 5. Likewise, in the case of Leukemia cancer, perfect performance metrics were achieved with both 

′𝑛′ values, but the model selected fewer genes (40) with ′𝑛′ set to 10 compared to 47 genes with ′𝑛′ set to 

5. 

 The interesting aspect of the experiment lies in the selection of fewer genes with ′𝑛′ = 10 across all 

datasets. This phenomenon suggests that the model likely favored gene subsets containing at least 50 genes, 

indicating that subsets comprising 10, 20, 30, and 40 genes failed to achieve improved error rates. 

Therefore, the decision to select fewer genes with ′𝑛′ = 10 reflects a strategic balance between gene count 

and classification accuracy. Overall, the performance improvement observed with ′𝑛′ = 10 can be attributed 

to the model's ability to strike a balance between exploring diverse gene subsets and selecting those that 

contribute most significantly to improved classification accuracy, thereby mitigating the risk of overfitting 

and enhancing generalization capability. Due to the model's superior performance when ′𝑛′ is set to 10 

across all three datasets, it has been chosen for subsequent comparison with existing studies outlined in 

earlier sections. 
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Table 3: Performance comparison of the proposed method with different values of ‘n’ 

 

5.2 Comparing the performance of the proposed method with existing methods in literature 

 As outlined in previous sections, the proposed method with ′𝑛′ set to 10, will be employed for 

comparative analysis with five recent studies in the literature, owing to its superior performance across all 

metrics compared to its counterpart. These existing studies have been extensively discussed in the literature. 

Note that as can be observe from Table 4, there are instances of missing results/values, particularly in gene 

counts for some existing methods. This might hinder the accurate interpretation of subsequent graphs. As 

a result, the studies with missing results are not included in the graphs presented. 

 The comparison basis between our proposed method and the five existing studies lies in the utilization 

of SI algorithms integrated with one or more filter methods for microarray cancer gene selection. The 

comparison metrics encompass accuracy, F1 score, and gene counts. This selection is due to the absence of 

error rate as a metric in most of the existing studies. Additionally, not all the studies utilized all three 

datasets as in our study. Consequently, for each of the existing studies, we only utilize datasets that overlap 

with ours for comparison purposes. Table 4 presents the comparison results for each of the three benchmark 

datasets. Similar to Table 3, each row corresponds to a specific dataset utilized.  

 Upon comparing the performance of the proposed method with existing studies, particularly concerning 

the Ovarian dataset, noteworthy insights emerge. The proposed method, alongside the work of [7], exhibited 

superior performances, achieving perfect scores of 100% in both accuracy and F1 metrics. However, it is 

worth noting that while [7] selected a significantly lower number of genes (13), our proposed method 

selected more genes, totaling 46. In the broader context of competing methods, specifically in the gene 

count metric, our proposed approach performs rather poorly by selecting the highest number of genes (46). 

Nonetheless, considering the vast pool of genes in the dataset (15,155), this selection can be deemed fair. 

Moreover, the ability of our method to achieve superior classification accuracy and F1 score underscores 

its capability to strike a balance between accuracy and the number of selected genes. The utilization of a 

chaotic method for both population and control parameter initialization, coupled with the integration of the 

SMOTE technique to address the imbalanced nature of the data, significantly contributed to this superior 

performance. The chaotic initialization facilitated a diverse exploration of the solution space, enhancing the 

Dataset Algorithms No. Genes Accuracy and 

SD 

F1-Score Error Rate 

Ovarian 

Cancer 

𝑛 =  5 

(100,200,300,400,500) 

95 ± 3.31 100.00 ± 0.00 

 

100.00 ± 0.00 

 

0.00 

n = 10 

(10,20,30,40,50,60,70,80,90,100) 

46 ± 3.69 100.00 ± 0.00 

 

100.00 ± 0.00 

 

0.00 

Colon 

Cancer 

𝑛 =  5 

(100,200,300,400,500) 

48 ± 3.69 100.00 ± 0.00 

 

100.00 ± 0.00 

 

0.00 

 n = 10 

(10,20,30,40,50,60,70,80,90,100) 

4 ± 1.49 100.00 ± 0.00 

 

100.00 ± 0.00 

 

0.00 

Leukemia 

Cancer 

𝑛 =  5 

(100,200,300,400,500) 

47 ± 3.48 100.00 ± 0.00 

 

100.00 ± 0.00 

 

0.00 

 n = 10 

(10,20,30,40,50,60,70,80,90,100) 

40 ± 4.45 100.00 ± 0.00 

 

100.00 ± 0.00 

 

0.00 
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algorithm's ability to converge to optimal solutions. Concurrently, the SMOTE technique ensured that the 

KNN learning algorithm was trained on a more balanced dataset, mitigating bias and enhancing 

generalization capability. 

Table 4: Performance comparison of the proposed method with existing studies in literature 

 

 In essence, the combined influence of chaotic initialization and imbalanced data handling mechanisms 

played a pivotal role in the proposed method's superior performance. By effectively balancing gene 

selection with classification accuracy and leveraging innovative techniques for data handling and 

initialization, our approach demonstrates robustness and efficacy in addressing the challenges posed by 

high-dimensional datasets in the Ovarian cancer dataset. 

 When evaluating the Colon cancer dataset, our proposed method demonstrated superior performance 

across all metrics compared to its competitors. Notably, it achieved perfect scores of 100% in both accuracy 

and F1 score, surpassing the performance of other methods. What is particularly notable is that our method 

achieved these exceptional results while utilizing significantly fewer genes, only 4 in total. There are several 

reasons why our method outperformed its competitors in this context. Firstly, the thorough exploration of 

the gene space facilitated by our approach allows for the identification of the most discriminative features 

relevant to Colon cancer classification. By efficiently selecting a concise subset of genes, our method 

minimizes redundancy and focuses on the most informative genetic markers associated with the disease. 

Furthermore, the utilization of a sophisticated method for gene subset selection and refinement, as well as 

the strategic integration of filter methods, enhances the robustness and effectiveness of our approach. This 

Datasets Citations/Methods Accuracy Score F1-Score No. Genes 

 Proposed Method 100.00 100.00 46 

Ovarian Cancer (Jeremiah et al., 2023) 98.00 97.00 18 

(Isuwa et al., 2023)  93.55 - 41 

(Ke et al., 2022) 98.42 - - 

(Alrefai and Ibrahim, 2022) 100.00 100.00 13 

 (Chaudhuri and Sahu, 2021) 99.52 - 18.50 

 Proposed Method 100.00 100.00 4 

Colon  

Cancer 

(Jeremiah et al., 2023) 94.20 93.60 16 

(Isuwa et al., 2023) 97.37 - 46 

(Ke et al., 2022) 91.90 - - 

(Alrefai and Ibrahim, 2022) 92.86 93.00 41 

 (Chaudhuri and Sahu, 2021) 97.76 - 18.90 

 Proposed Method 100.00 100.00 40 

Leukemia 

Cancer 

(Jeremiah et al., 2023) - - - 

 (Isuwa et al., 2023) 100.00  44 

 (Ke et al., 2022) - - - 

 (Alrefai and Ibrahim, 2022) 100.00 - 26 

 (Chaudhuri and Sahu, 2021) - - - 
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ensures that the selected gene subset not only maximizes classification performance but also generalizes 

well to unseen data, reducing the risk of overfitting. 

 Moreover, the emphasis on simplicity and interpretability in gene selection is a key factor contributing 

to our method's success. By prioritizing a smaller number of genes without compromising performance, 

our approach not only improves computational efficiency but also facilitates biological interpretation, 

enabling researchers to pinpoint the specific genes implicated in Colon cancer pathogenesis. In the 

Leukemia cancer dataset, our proposed method, along with the work of [7], once again demonstrated the 

highest performance, achieving a perfect accuracy score of 100%. However, it is noteworthy that [7] method 

selected a notably smaller number of genes, totaling 26, compared to our method, which selected a total of 

40 genes.  

 The exceptional performance of both our method and Alrefai and Ibrahim's approach in achieving 

perfect accuracy underscores the effectiveness of the methodologies employed. Despite the disparity in the 

number of selected genes, both methods successfully identified informative gene subsets crucial for 

accurate classification of Leukemia cancer samples. Proposed method's selection of a larger gene set may 

indicate a more comprehensive representation of relevant genetic features associated with Leukemia cancer. 

However, Alrefai and Ibrahim's ability to achieve comparable performance with fewer genes suggests a 

more efficient yet effective gene selection strategy. 

 In conclusion, the results of our comparative analysis across the Ovarian, Colon, and Leukemia cancer 

datasets highlight the efficacy of our proposed method in achieving superior performance in terms of 

accuracy and gene selection. The utilization of hybrid filter-wrapper methods, comprehensive gene space 

exploration, and efficient gene subset selection contribute to the success of our approach. However, it is 

essential to acknowledge the No-Free-Lunch theorem, which suggests that no single optimization method 

is universally superior across all problem domains. While our method demonstrates strong performance in 

these specific datasets, its applicability and effectiveness may vary in other contexts. Thus, further research 

and validation across diverse datasets are needed to fully assess its potential and limitations. 

6 Conclusion and future works 

 The study aimed to address challenges associated with high-dimensional data, such as the curse of 

dimensionality, feature redundancy, and data imbalance, by integrating filter methods with the SSA 

enhanced with a chaotic map. The discussion highlights notable variations in performance metrics across 

three benchmark datasets (Ovarian, Colon, and Leukemia) when different values of ′𝑛′ were employed. 

Results indicate that setting ′𝑛′ to 10 consistently led to superior performance compared to ′𝑛′ set to 5, 

achieving a strategic balance between minimal gene counts and enhanced gene classification accuracy. 

Furthermore, comparisons with existing studies demonstrate the performance competitiveness of the 

proposed method, particularly in terms of accuracy and F1 score, across all datasets 

 Based on the findings of the study, several recommendations are proposed for future research endeavors 

in this domain. Firstly, experimenting with different values of ′𝑛′ could enrich the analysis and provide 

deeper insights into the behavior and performance of the proposed method across a wider range of scenarios. 

By varying ′𝑛′ systematically and conducting thorough experimentation, researchers can assess how 

changes in this parameter affect the algorithm's convergence behavior, solution quality, and overall 

performance. This comprehensive analysis could help identify an optimal value of ′𝑛′ that maximizes 

performance metrics such as accuracy, F1 score, and gene counts across different datasets. Furthermore, 
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experimenting with different values of ′𝑛′ could also shed light on the trade-off between computational 

efficiency and solution quality. Lower values of ′𝑛′ may lead to faster convergence but could result in 

suboptimal solutions, while higher values of ′𝑛′ may enhance solution quality but at the expense of 

increased computational time and resource requirements. Secondly, further investigation is warranted to 

explore the applicability and effectiveness of the proposed method across diverse datasets and problem 

domains. Additionally, efforts should be directed toward enhancing the scalability and computational 

efficiency of the method to handle larger datasets. Moreover, exploring alternative optimization techniques 

and hybrid approaches may provide valuable insights into improving gene selection performance. Finally, 

collaboration with domain experts and biologists is essential to validate the biological relevance of the 

selected gene subsets and facilitate translational research efforts in cancer diagnosis and treatment. 
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