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Abstract: Human Action Recognition (HAR) has emerged as a pivotal
domain within computer vision and machine learning, driven by its
transformative potential across surveillance, healthcare, human-
computer interaction, and sports analytics. Despite notable advances, a
persistent gap remains between benchmark-driven performance and
real-world applicability, particularly in scenarios demanding cross-
subject generalization, fine-grained understanding, computational, and
scalability. This survey presents a systematic and critical review of
HAR research published between 2022 and 2025, encompassing 30
peer-reviewed articles from the IEEE Xplore digital library. We trace
the progression from unimodal frameworks to multimodal fusion
architectures, highlighting innovations across skeleton-based, sensor-
based, and vision-based modalities. Key architectural trends include
transformer-based models, graph neural networks, and self-supervised
learning, alongside domain-specific adaptations in healthcare and
sports. Furthermore, we examine methodological shifts toward
lightweight and generalizable systems. By synthesizing these
developments, this work offers a structured roadmap for future
research, emphasizing the need for robust evaluation protocols, ethical
considerations, and deployment-ready HAR solutions.
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1. Introduction
Human Activity Recognition (HAR) has emerged as a pivotal field within artificial intelligence (Al)

and ubiquitous computing, driven by applications in healthcare, human—computer interaction, and smart
environments. Over the past decade, researchers have increasingly modeled human activity using
diverse modalities, ranging from vision-based systems to wearable sensors [1]. Despite substantial
progress, significant challenges remain, including limited large-scale datasets [2], privacy-preserving
learning [3], and poor generalization across demographic groups [4]. Deep learning architectures such
as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and graph convolutional
networks (GCNs) dominate HAR research due to their ability to capture temporal and spatial
dependencies [5]. More recently, transformer-based methods have also demonstrated strong
performance in multimodal HAR [6][25].

To contextualize current progress, this review provides a structured synthesis of recent HAR

approaches, public datasets, evaluation metrics, and deployment challenges. In particular, we highlight
gaps in dataset diversity, federated learning for privacy, and explainable Al for clinical and human—
robot interaction applications. Unlike prior surveys, we integrate both technical developments and real-
world considerations to provide a roadmap for future HAR research.
By systematically analyzing a curated collection of 30 research papers published between 2022 and
2025, this review focuses on three key areas: The evolution from single-modality systems to advanced
multimodal fusion techniques [7]; The shift from general action recognition to specialized, fine-grained,
and domain-specific applications [8][9]; and the emerging challenges of efficiency, privacy, and real-
world generalization[10][5].

The remainder of this review is structured as follows: Section I, "Materials and Methods," describes
the systematic approach adopted for identifying, selecting, and analyzing the reviewed studies,
including the search strategy, inclusion criteria, and data extraction process. Section III, Summary of
Key Observations, presents the main findings, covering HAR system architecture, application areas,
datasets, algorithmic techniques, and major research challenges. Section IV highlights the open issues.
Section V, Conclusion and Future Work, highlights the overall insights gained and outlines future
directions for advancing research in Human Action Recognition (HAR).

2. Materials and Methods
This section outlines the methodological framework used to conduct a systematic review of Human

Action Recognition (HAR) systems. The objective was to ensure comprehensive coverage and a
rigorous evaluation of relevant research published between 2022 and 2025, following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [1]. Searches were
conducted primarily in IEEE Xplore, and supplemented with ACM Digital Library, Scopus, and Web
of Science to avoid database bias. The selection process, depicted in Figure 1, adheres to PRISMA
standards.
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This review was conducted in accordance with PRISMA guidelines [1], encompassing studies
published between 2022 and 2025. Searches were performed in IEEE Xplore, ACM Digital Library,
Scopus, and Web of Science to ensure comprehensive coverage. The selection process is shown in
Figure 1.

2.1 Search Strategy
A structured search strategy was implemented using keywords such as: “human action recognition”,

“activity recognition”, “multimodal fusion”, “pose estimation”, “graph convolutional networks
(GCN)”, “transformers”, “few-shot learning”, and “cross-subject generalization”. Boolean operators
(AND/OR) were applied, and grey literature sources (e.g., arXiv) were screened.

2.2 Inclusion And Exclusion Criteria

The inclusion and exclusion criteria were precisely defined to select studies that significantly
contributed to the current understanding of HAR systems and to ensure the academic rigor and
relevance of this review.
2.2.1 Inclusion Criteria:
Peer-reviewed articles published in English between 2022 and 2025.
HAR studies using RGB, skeleton, Inertial Measurement Unit (IMU), or multimodal data.
Publications in IEEE venues
Studies with accessible full text that proposed novel architectures, datasets, or addressed key
challenges like fine-grained recognition, cross-domain generalization, or computational
efficiency.
2.2.2 Exclusion Criteria:

1. Studies published before 2022 or from sources other than IEEE Xplore.

2. Duplicate studies.

3. Review articles and meta-analyses, which were used for background context but not included

in the final synthesis.
4. Non-peer-reviewed or inaccessible full texts

b e

2.3 Selection Process

The initial search yielded 1,245 records. After removing 145 duplicates, 1,100 records remained.
Screening excluded 800 based on titles/abstracts. Of the 300 full-text articles assessed, 225 were
excluded for lack of methodological rigor. A total of 30 studies were included in the qualitative
synthesis, and 45 in the quantitative analysis.
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Records identified through database searching (n = 1,200) Additional records identified through other sources (n = 1500
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Records after duplicates removed (n = 1,100)

i

Records screened (n = 1,100)

N

Records excluded (n = 800) Full-text articles assessed for eligibility (n = 300)
Full-text articles excluded, with reasons (n = 200) Studies included in qualitative synthesis (n = 100)

'

Studies included in quantitative synthesis (meta-analysis) (n = 75)
Figure 1: PRISMA flowchart

2.4 Data Extraction And Analysis
A standardized data extraction form was applied to all 75 studies, recording bibliographic metadata,

research problem, methodology, datasets, and contributions.

*  Bibliographic information: Title, authors, publication year, and IEEE publication venue

*  Core problem: The specific challenge or research gap the paper addresses.

*  Methodology: The proposed architecture and techniques (e.g., CNN, GCN, Transformer,

fusion, etc.).

»  Datasets: The benchmark or custom datasets used for evaluation.

*  Key contributions: The primary findings and contributions of the work.

A mixed-methods synthesis combined quantitative performance analysis with qualitative coding of
methodological innovations. Algorithms were categorized into classical machine learning, deep
learning (CNN, RNN, GCN, Transformer), and hybrid/fusion approaches [2]-[6]. Dataset evaluation
considered scale, modality, annotation quality, and demographic coverage [7]-[12].

3. Summary of key observations
This section provides an overview of the key findings from the present study, which include the

structure of the HAR system architecture, application areas, and datasets used, that serve as the
foundation for evaluation and benchmarking.

3.1 The HAR system architecture
The fundamental purpose of a Human Action Recognition (HAR) system architecture is to provide a

structured, multi-stage pipeline that methodically transforms raw, noisy sensor data into high-level,
interpretable action labels [1]. Its importance lies in establishing a standardized process that ensures
modularity and reliability. Each stage from data acquisition to final classification serves as a distinct
processing block, allowing researchers to innovate on specific components, such as feature extraction
or classification algorithms, while maintaining a coherent end-to-end workflow. This systematic
approach is crucial for developing robust and accurate systems capable of functioning in complex, real-
world environments [11].

A HAR system typically follows a modular pipeline that transforms raw sensor inputs into
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interpretable action labels [1]. The pipeline consists of four major stages: data acquisition,
preprocessing, feature extraction, and classification. This structure ensures modularity, enabling
innovation at each stage while maintaining an end-to-end framework [2].

At the acquisition stage, systems employ multiple sensing modalities including RGB cameras, depth
sensors, inertial measurement units (IMUs), infrared sensors, and even Wi-Fi-based radio frequency
devices [3], [4]. The preprocessing stage addresses noise removal, normalization, and temporal
alignment.

The feature extraction stage has undergone the most rapid evolution. Traditional handcrafted features
have been replaced by deep learning models. Convolutional Neural Networks (CNNs) dominate image-
based feature extraction, while Graph Convolutional Networks (GCNs) are widely adopted for skeleton-
based recognition due to their ability to capture spatial-temporal topologies [5], [6]. More recently,
Transformers have emerged as powerful architectures for multimodal fusion and long-range temporal
modeling [7], [8].

Several architectural innovations highlight this progress. Pose-guided GCNs (PG-GCN) improve

robustness by integrating body joint relationships into graph learning [6]. Lightweight models such as
GNet-FHO reduce computational complexity while retaining competitive accuracy [5]. These efforts
address real-world challenges, including deployment in mobile and embedded platforms.
Despite these advances, two persistent challenges remain: (i) the interpretability of deep architectures
and (ii) the reliance on curated datasets, which may not reflect uncontrolled environments [9]. Future
HAR systems are expected to employ end-to-end trainable architectures with dynamic feedback
between modules and built-in mechanisms for privacy preservation, uncertainty modeling, and domain
generalization [3], [10].

Start

I S

Data Collection

N T

Preprocessing

Feature Extraction

Classification

/ Action Label /

Figure 2: Architectural overview of the HAR system, showing sequential processing stages from

sensor data collection to activity labeling.
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3.2 Application areas

The translation of HAR research into practical domains demonstrates its societal value. The primary
application areas include healthcare, sports analytics, and human—robot interaction (HRI).

In healthcare, HAR enables diagnostic and monitoring systems. For example, deep learning models
using pose estimation have been applied to quantify motor impairment in Parkinson’s disease [11],
while sensor- and vision-based models support early stroke detection [12]. In elderly care, datasets such
as HDIA capture daily activities to monitor safety and independence [3].

In sports, HAR systems provide fine-grained analysis of athletic performance. Architectures such as
DDC3N and GCN-based frameworks have been used to study tennis serves, CrossFit movements, and
figure skating sequences [13], [14]. These models not only enhance training outcomes but also support
injury prevention through biomechanical assessment.

In HRI, HAR is a critical enabler for collaborative robots (cobots). By integrating game theory and
fuzzy logic, models predict human intent, allowing robots to adjust behavior dynamically [15]. This
area has profound implications for industrial safety, interactive gaming, and assistive robotics.

Key challenges across these domains include the scarcity of domain-specific datasets, difficulties in
modeling subtle movements (e.g., fine motor impairments), and the need for explainable Al (XAI) to
ensure trust and transparency [16].

3.3 Datasets
Datasets are the foundation of HAR research, providing both training material and standardized
benchmarks. They fall into two broad categories: benchmark datasets and domain-specific datasets.

3.3.1 Benchmark datasets
Benchmark datasets play a vital role in HAR research because they serve as a fundamental

foundation for the development and assessment of models, as illustrated in Table 1. They provide

controlled settings for testing and comparing algorithms.

* NTU RGB+D (60/120 classes): Large-scale multimodal dataset including RGB, depth, skeleton,
and infrared modalities. It is the most widely used benchmark for skeleton-based recognition [6],
[17]. Its limitations include controlled indoor settings and noise in skeleton sequences.

» Kinetics (400/600/700): A massive video dataset from YouTube clips, serving as the standard for
pretraining large-scale deep networks [13]. Challenges include dataset decay (video unavailability)
and label noise.

+ UCF101 & HMDBS51: Classical video benchmarks used for generalization studies. Although
smaller and limited in diversity, they remain useful for ablation and efficiency testing [18], [19].

* Sensor-based datasets (such as WISDM, PAMAP2, UCI-HAR, etc.): Provide accelerometer and
gyroscope time-series data for wearable device applications [20], [21], [23], [24], [25], [26]. They
are lightweight but lack contextual information, such as object interactions.
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Table 1: Summary for benchmark datasets

Dataset Modality Frame Resolu Sample/ Applic Tool/Fram Classifi Accu Scope
rate tion Class ation ework er racy of Use
Scenar
ios
NTU RGB, 30 FPS 1920x  ~56,000 Indoor  PyTorch, GCNes, Varie  Bench
RGB+D  Depth, (typica 1080 clips/ 60 activity OpenPose, Transfor s (up mark
(60/120)  Skeleton, 1) (RGB, or 120 recogni Open3D mers to for
Infrared variabl  classes tion, 96%)  skeleto
e) general n-based
HAR models;
models limited
by lab
setting
and
skeleto
n data
noise.
Useful
for
pose-
based
HAR
researc
h.
Kinetics RGB 25-30  Variab ~300K+  General TensorFlo 13D, ~70-  Massiv
(400/600 video FPS le clips / large- w, PyTorch SlowFas 75% e scale;
/700) (varied (mostl 400-700 scale t, ViViT  top-1  suitable
) y 480— classes action for pre-
720p) recogni training
tion, and
pre- general
training tasks,
not
fine-
grained,
data
decay
due to
YouTu
be
links.
UCF101 RGB 25FPS 320x2 13,320 Legacy OpenCV, CNNs, ~85—-  Good
video 40 clips / benchm Caffe, Two- 90% for
101 ark, TensorFlo  stream baseline
classes general w network testing
action and
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recogni
tion

efficien
cy
evaluati
on;
limited
diversit
y; older
architec
ture
support.

HMDBS RGB

1

video

30 FPS  320x2

40

(low
quality

)

6,766
clips / 51
classes

Film-
based
action
recogni
tion,
robustn
ess
testing

MATLAB,
Python
libraries

SVM, ~60—
3D 70%
CNN:s,
LSTM

Used to
test
robustn
ess on
poor
quality
and
diverse
scenes;
small
scale
and
video
noise
make it
difficult
for fine-
grained
analysis

Sensor-
Based

(WISD
M, etc.)

Accelero
meter,
Gyroscop
e (time-
series)

20—
100 Hz

N/A

~10,000

100,000
+

samples
/  6-18
classes

Fitness
trackin
g
health
monitor
ing,
embedd
ed
systems

Scikit-
learn,
TensorFlo
W

~85—
95%

Decisio
n Trees,
LSTMs,
CNNs

Lightw
eight,
privacy
preservi
ng use
in
wearabl
es;
lacks
visual
context,
sensitiv
e to
placem
ent and
user
variabil
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ity.

3.3.2 User-generated datasets
A significant trend in the reviewed literature is the creation of new, specialized datasets designed to

overcome the limitations of existing benchmarks and address specific research questions. These datasets
are typically developed in-house by research teams to fill a specific gap. For example, the HADE dataset
was created to provide a more diverse set of real-world actions than found in many benchmarks [20].
The HDIA dataset was developed specifically for privacy-preserving elderly care, using IR cameras
and wearable sensors to avoid capturing identifiable information [3]. Similarly, the NOL-18 Exercise
dataset was created to provide labeled data for the specific task of counting exercise repetitions [16],
and the CrossFit/Figure Skating datasets were built to enable fine-grained analysis of complex athletic
movements [15]. The primary advantage of user-generated datasets is their high relevance to a specific
problem, providing data that is much better suited for training specialized models. However, they are
often smaller in scale than large benchmarks and may have inherent biases based on the specific
collection environment and participant pool.

3.3.3 Summary comparing HAR datasets
Recent advances in HAR datasets have substantially contributed to the field by enabling the

development of more accurate and robust systems. Benchmark and domain-specific datasets have
improved in capturing complex human actions, interactions, and subtle variations. However, critical
challenges remain. Dataset diversity, representativeness, and real-world complexity are often
insufficient, limiting the generalization of HAR models across different populations, environments, and
sensor types [3], [20]. Future dataset development should prioritize:

1. Inclusivity: Incorporating a broad range of participants, demographics, and body types.

2. Real-world complexity: Including occlusions, multi-person interactions, variable lighting, and
diverse environments.

3. Privacy-preserving data acquisition: Utilizing methods such as silhouette representations,
anonymized skeletons, or edge-based data processing to minimize sensitive information
exposure [22], [23].

These improvements are expected to enhance the universality, precision, and adaptability of HAR
systems

3.4 Techniques/Algorithms
HAR research has evolved from classical machine learning methods to advanced deep learning

architectures, as illustrated in Table 2. Algorithmic progress can be categorized as follows:

3.4.1 Supervised learning:
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Supervised learning remains the dominant paradigm in HAR, where models are trained on labeled
datasets. Traditional classifiers, such as Support Vector Machines (SVM) and Random Forests (RF),
often perform robustly on sensor-based datasets with handcrafted features. For example, [4]
demonstrated that classical models can outperform deep learning methods in cross-subject scenarios
due to better generalization. In medical applications, [8] used Logistic Regression and Decision Trees
for stroke detection from neuroimaging.

3.4.2 Human—Robot Interaction (HRI)

HRI tasks require algorithms that model human intent and ensure safe collaboration. [6] introduced
a cobot decision-making framework that combines game theory with intuitionistic fuzzy sets, allowing
robots to account for human hesitation and subjective risk perception. This approach is critical for
shared workspaces, enhancing both safety and human-like behavior.

3.4.3 Silhouette sequences

Silhouette sequences are commonly used due to their computational efficiency and privacy
preservation. [22] proposed Polygon Coding, a method that converts 2D silhouettes into polygonal
representations and encodes geometric properties into fixed-length feature vectors. This eliminates
variable sequence length issues without relying on recurrent architectures.

3.4.4 Computational modeling
Efficient computation is essential for edge deployment. Lightweight architectures, such as GNet-

FHO, employ Ghost Networks and Fire-Hawk Optimizers to optimize feature selection on wearable
sensors [5]. Similarly, Lightweight Video Vision Transformers (LWV-ViT) use spatial-temporal
pruning and cross-temporal token interactions for efficient video recognition on edge devices [27].

3.4.5 Graph-based approaches
Graph Convolutional Networks (GCNs) are well-suited for skeleton-based HAR due to their ability

to model spatial-temporal joint dependencies. [7] introduced Pose-Guided GCN (PG-GCN), which
integrates 2D pose information with 3D skeletons via dynamic attention. In domain-specific contexts,
[14] applied GCNs to analyze tennis movements with high precision.

3.4.6 Deep learning architectures
The vast majority of modern HAR systems are built on various deep learning architectures.

* (CNNs and RNNs: Hybrid CNN-RNN models, such as Multichannel CNN-GRU [28] and CNN-
LSTM with Self-Attention [25], extract spatial features and model temporal dependencies from
sensor data.

* Transformers: Self-attention and cross-attention mechanisms excel in multimodal fusion. The
SSRT model [2] fuses skeleton and RGB data for fine-grained human-object interaction (HOI),
while [18] employs Transformers to learn 3D skeletal representations directly from meshes.

» Specialized Networks: Examples include ResNet-SE for complex activity recognition from
wearable sensors [26] and DDC3N, a Doppler-driven 3D CNN for high-precision sports
analytics [15].
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3.5 Open challenges and limitations
Despite significant progress, the field of HAR systems faces multiple challenges.

3.5.1 Data collection and pre-processing
Collecting and annotating datasets are time-consuming, costly, and prone to noise. Sensor and

imaging data are affected by device variability, environmental factors, and acquisition conditions [23],
[29]. Preprocessing, such as filtering and normalization, is essential to create clean input for learning
algorithms [24].

3.5.2 Dataset modeling and generalization
HAR models often suffer from domain shift, performing poorly on unseen subjects or environments.

[4] demonstrated substantial cross-subject performance drops. Large-scale, diverse datasets like HADE
[20] and HDIA [3] aim to mitigate this by providing varied training examples.

Table 2: Summary of literature on HAR techniques

Authors Contributions

Proposes a cobot action decision-making method based on intuitionistic fuzzy sets and game
[6] theory for HRC.

Compares cross-subject performance of traditional ML and deep learning models on HAR
[4],[32] datasets.

Develops an angular features-based HAR system for real-world applications with subtle
[30] unit actions.

[18] Learns a 3D skeletal representation from a Transformer architecture for action recognition.

[28] Proposes a multichannel CNN-GRU model for sensor-based human activity recognition.
Develops a ResNet-SE channel attention-based deep residual network for complex activity
[26] recognition.
Creates an automatic detection pipeline for assessing the motor severity of Parkinson's
[10] disease.
[25] Proposes a deep CNN-LSTM with a self-attention model for HAR using wearable sensors.
Proposes a framework for learning spatial affordances from 3D point clouds to map unseen
[13] human actions.
Develops a machine learning-based diagnostic model using neuroimages for stroke
[8] identification.
Proposes a Doppler-Driven 3D CNN (DDC3N) for HAR, with new datasets for CrossFit
[15] and Figure Skating.
[17] Provides a comprehensive survey of RGB-based and skeleton-based HAR methods.
[24] Proposes a multi-stream TCN-based approach with ECA-Net for sensor-based HAR.
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3.5.3 Open-access and commercial tools
Open-source tools like OpenPose provide flexible pose estimation pipelines [11], while commercial

sensors, e.g., Microsoft Kinect, enabled widespread skeleton-based HAR [9]. Researchers must balance
cost, flexibility, and technical complexity when choosing tools.

3.5.4 Video frame analysis

Processing video data is computationally intensive. Techniques such as frame sampling or action
segmentation are employed to reduce redundancy. For instance, [16] segmented repetitive exercises
into unit actions, while multimodal fusion (RGB + skeleton) resolves ambiguities in human-object
interactions [2].

3.5.5 Performance metrics
Accuracy alone can be misleading, particularly in class-imbalanced or safety-critical applications. A

combination of precision, recall, F1-score, and task-specific metrics (e.g., ROC, AUC for medical
diagnosis) is increasingly recommended [5], [8] as illustrated in Table 3.

Table 3: Overview of datasets and evaluation metrics in recent HAR studies

Authors Datasets Evaluation Metrics
[8] Custom CT Image Dataset Accuracy, Precision, Recall, F1-score, ROC,
AUC
[23] mHealth, PAMAP2, UCIDSADS Accuracy, F1-score, Confusion Matrix
[5] WISDM, Motion Sense, UCI-HAR Accuracy, Precision, Recall, F1-score
[12] StanWiFi, MultiEnvironment Accuracy, Precision, Recall, F1-score
[2] Toyota Smarthome, ETRI-Activity3D Accuracy, Precision, Recall, F1-score

In specialized applications like stroke detection, even more advanced metrics like the Receiver
Operating Characteristic (ROC) curve and the Area Under the Curve (AUC) are used to assess the
diagnostic power of a model across different thresholds [8].
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Table 4: HAR taxonomy

S/N  Techniques Application  Explanation
1. Computational Dynamic Real-time FPGA-based devices can recognize human
Modeling actions.  Intelligent  settings, = human-machine
communications, and security systems utilize this
technology.
2. Silhouette Dynamic This approach analyzes the time sequence of the camera
Sequence Point silhouettes. They have built action-based spaces. The
Clouds activities and shape information were recognized using

3-D point clouds.

3. Graph-based Static Classification of human behavior based on graphs. This
approach model maintains a complex spatial arrangement of the
joints in the body by considering how they move and

change over time.

4. Human motion Dynamic New hardware for action recognition based on two-
understanding stream neural networks. This design delivers the same
for HRI [32] accuracy as existing baseline models with fewer

operations.

5. Deep Learning Dynamic This includes various architectures like CNN-LSTM,
Architectures GCNs, and Transformers to capture complex spatial and

temporal patterns in HAR data.

6.  Pre-trained Dynamic Combines class-based and instance-based success rates
CNNs to assess transfer models. All class- and instance-based
NASNet-Large parameterize the ABC-optimized CNN.

4. Highlighted open problems and research gaps in HAR

This section synthesizes current challenges and critical gaps remaining within the HAR field. Table
4 provides a taxonomy of prominent HAR techniques, differentiating them by their underlying
computational modeling, application type (static/dynamic), and mechanism, thereby underscoring the
diversity and complexity of the current solution landscape. Despite the advancements outlined in this
taxonomy, fundamental limitations persist, particularly concerning data heterogeneity and labeling,
robustness and generalization, and real-time resource efficiency, which are discussed in detail in the
following subsections.

4.1 Cross-subject and cross-dataset generalization
Despite the growth of large-scale HAR datasets, models still struggle to generalize across unseen

subjects, environments, or devices. Current deep learning systems often overfit training datasets,
limiting real-world deployment. Future research should focus on domain generalization, federated
learning, and subject-invariant feature extraction to create models that are robust to inter-subject
variability and adaptable to new contexts [4][20]. Developing standardized benchmarks specifically
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targeting cross-subject evaluation could further guide the community in addressing this challenge.

4.2 Multimodal fusion for heterogeneous inputs

While multimodal fusion is increasingly adopted, most existing systems rely on simple
concatenation or late-fusion strategies. There is a critical need for dynamic, context-aware fusion
techniques, such as cross-attention or co-attention mechanisms, which allow different modalities (RGB,
skeleton, sensor, audio) to influence each other throughout the pipeline [2][18]. Research in flexible,
transformer-based architectures that can handle a variable number of modalities, rather than being fixed,
is still an open area that could significantly enhance recognition performance and robustness.

4.3 Data scarcity and synthetic data generation
Many specialized HAR applications, such as healthcare monitoring or sports analytics, suffer from

insufficient labeled data. Few-shot and zero-shot learning methods are promising but still immature.
There is a need for high-fidelity synthetic data pipelines using advanced generative models (GAN:S,
diffusion models) to simulate diverse human actions under variable environmental and sensor
conditions [16][17]. Future research should focus on creating automatically labeled, privacy-preserving
synthetic datasets to reduce manual data collection effort and enable robust model training for rare or
domain-specific actions.

5. Conclusion and future work

This paper has provides a comprehensive analysis of 30 HAR studies published between 2022—
2025, highlighting the transition from generalized, single-modality models to specialized, multimodal
architectures designed for real-world deployment. Key trends include the dominance of deep learning
models (GCNs, Transformers), the growing importance of multimodal fusion, and increasing focus on
domain-specific applications in healthcare, sports analytics, and human-robot interaction. Despite
progress, significant challenges persist:

1. High computational cost of state-of-the-art models.

2. Scarcity of large-scale, diverse, unbiased datasets.
3. Cross-subject and cross-dataset generalization. Future research directions include:

* Advanced multimodal fusion: Moving beyond concatenation or late-fusion to cross-attention and
co-attention models that allow dynamic interaction between RGB, skeleton, sensor, and audio
modalities. Developing flexible Transformer architectures capable of handling variable modality
inputs can significantly enhance robustness.

* Generalization and fairness: Prioritize cross-subject and cross-dataset generalization using
regularization, domain generalization, and federated learning approaches to train models on
decentralized data without compromising privacy. Address algorithmic biases related to gender,
age, skin tone, and physical ability for equitable deployment.

» Data scarcity: Expand the use of few-shot and zero-shot learning and develop synthetic data
pipelines using GANSs or diffusion models to generate diverse, automatically labeled datasets for
rare or specialized actions.

* Domain-specific real-time applications: Build interactive healthcare systems for rehabilitation
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and adaptive cobots in HRI, emphasizing lightweight models for real-time edge deployment
without sacrificing accuracy.
In conclusion, advancing multimodal fusion, ensuring fairness, solving data scarcity, and developing
efficient domain-specific systems will propel HAR toward creating safer, more intelligent, and
adaptable environments.
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Appendix A
LIST OF ABBREVIATIONS
Abbreviation Full Name
HAR Human Action Recognition
HOI Human-Object Interaction
ML Machine Learning
DL Deep Learning
GCN Graph Convolutional Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
IMU Inertial Measurement Unit
IR Infrared
CSI Channel State Information
DTW Dynamic Time Warping
S-SVM Structured Support Vector Machine
GZSAR Generalized Zero-Shot Action Recognition
LOSO Leave-One-Subject-Out
PD Parkinson's Disease
HRC Human-Robot Collaboration
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