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Abstract: Human Action Recognition (HAR) has emerged as a pivotal 

domain within computer vision and machine learning, driven by its 

transformative potential across surveillance, healthcare, human-

computer interaction, and sports analytics. Despite notable advances, a 

persistent gap remains between benchmark-driven performance and 

real-world applicability, particularly in scenarios demanding cross-

subject generalization, fine-grained understanding, computational, and 

scalability. This survey presents a systematic and critical review of 

HAR research published between 2022 and 2025, encompassing 30 

peer-reviewed articles from the IEEE Xplore digital library. We trace 

the progression from unimodal frameworks to multimodal fusion 

architectures, highlighting innovations across skeleton-based, sensor-

based, and vision-based modalities. Key architectural trends include 

transformer-based models, graph neural networks, and self-supervised 

learning, alongside domain-specific adaptations in healthcare and 

sports. Furthermore, we examine methodological shifts toward 

lightweight and generalizable systems. By synthesizing these 

developments, this work offers a structured roadmap for future 

research, emphasizing the need for robust evaluation protocols, ethical 

considerations, and deployment-ready HAR solutions.  
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1. Introduction 
Human Activity Recognition (HAR) has emerged as a pivotal field within artificial intelligence (AI) 

and ubiquitous computing, driven by applications in healthcare, human–computer interaction, and smart 

environments. Over the past decade, researchers have increasingly modeled human activity using 

diverse modalities, ranging from vision-based systems to wearable sensors [1]. Despite substantial 

progress, significant challenges remain, including limited large-scale datasets  [2], privacy-preserving 

learning [3], and poor generalization across demographic groups [4]. Deep learning architectures such 

as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and graph convolutional 

networks (GCNs) dominate HAR research due to their ability to capture temporal and spatial 

dependencies [5]. More recently, transformer-based methods have also demonstrated strong 

performance in multimodal HAR [6][25]. 

To contextualize current progress, this review provides a structured synthesis of recent HAR 

approaches, public datasets, evaluation metrics, and deployment challenges. In particular, we highlight 

gaps in dataset diversity, federated learning for privacy, and explainable AI for clinical and human–

robot interaction applications. Unlike prior surveys, we integrate both technical developments and real-

world considerations to provide a roadmap for future HAR research. 

By systematically analyzing a curated collection of 30 research papers published between 2022 and 

2025, this review focuses on three key areas: The evolution from single-modality systems to advanced 

multimodal fusion techniques [7]; The shift from general action recognition to specialized, fine-grained, 

and domain-specific applications [8][9]; and the emerging challenges of efficiency, privacy, and real-

world generalization[10][5]. 

The remainder of this review is structured as follows: Section II, "Materials and Methods," describes 

the systematic approach adopted for identifying, selecting, and analyzing the reviewed studies, 

including the search strategy, inclusion criteria, and data extraction process. Section III, Summary of 

Key Observations, presents the main findings, covering HAR system architecture, application areas, 

datasets, algorithmic techniques, and major research challenges. Section IV highlights the open issues. 

Section V, Conclusion and Future Work, highlights the overall insights gained and outlines future 

directions for advancing research in Human Action Recognition (HAR). 

2. Materials and Methods 
This section outlines the methodological framework used to conduct a systematic review of Human 

Action Recognition (HAR) systems. The objective was to ensure comprehensive coverage and a 

rigorous evaluation of relevant research published between 2022 and 2025, following the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [1]. Searches were 

conducted primarily in IEEE Xplore, and supplemented with ACM Digital Library, Scopus, and Web 

of Science to avoid database bias. The selection process, depicted in Figure 1, adheres to PRISMA 

standards.  
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This review was conducted in accordance with PRISMA guidelines [1], encompassing studies 

published between 2022 and 2025. Searches were performed in IEEE Xplore, ACM Digital Library, 

Scopus, and Web of Science to ensure comprehensive coverage. The selection process is shown in 

Figure 1. 

2.1 Search Strategy 

A structured search strategy was implemented using keywords such as: “human action recognition”, 

“activity recognition”, “multimodal fusion”, “pose estimation”, “graph convolutional networks 

(GCN)”, “transformers”, “few-shot learning”, and “cross-subject generalization”. Boolean operators 

(AND/OR) were applied, and grey literature sources (e.g., arXiv) were screened. 

2.2 Inclusion And Exclusion Criteria 

The inclusion and exclusion criteria were precisely defined to select studies that significantly 

contributed to the current understanding of HAR systems and to ensure the academic rigor and 

relevance of this review. 

2.2.1 Inclusion Criteria: 

1. Peer-reviewed articles published in English between 2022 and 2025. 

2. HAR studies using RGB, skeleton, Inertial Measurement Unit (IMU), or multimodal data. 

3. Publications in IEEE venues  

4. Studies with accessible full text that proposed novel architectures, datasets, or addressed key 

challenges like fine-grained recognition, cross-domain generalization, or computational 

efficiency. 

2.2.2 Exclusion Criteria: 

1. Studies published before 2022 or from sources other than IEEE Xplore. 

2. Duplicate studies. 

3. Review articles and meta-analyses, which were used for background context but not included 

in the final synthesis. 

4. Non-peer-reviewed or inaccessible full texts 

2.3 Selection Process 

The initial search yielded  1,245 records. After removing 145 duplicates, 1,100 records remained. 

Screening excluded 800 based on titles/abstracts. Of the 300 full-text articles assessed, 225 were 

excluded for lack of methodological rigor. A total of 30 studies were included in the qualitative 

synthesis, and 45 in the quantitative analysis.  
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Figure 1: PRISMA flowchart 

2.4 Data Extraction And Analysis 

A standardized data extraction form was applied to all 75 studies, recording bibliographic metadata, 

research problem, methodology, datasets, and contributions. 

• Bibliographic information: Title, authors, publication year, and IEEE publication venue 

• Core problem: The specific challenge or research gap the paper addresses.  

• Methodology: The proposed architecture and techniques (e.g., CNN, GCN, Transformer, 

fusion, etc.). 

• Datasets: The benchmark or custom datasets used for evaluation. 

• Key contributions: The primary findings and contributions of the work. 

A mixed-methods synthesis combined quantitative performance analysis with qualitative coding of 

methodological innovations. Algorithms were categorized into classical machine learning, deep 

learning (CNN, RNN, GCN, Transformer), and hybrid/fusion approaches [2]–[6]. Dataset evaluation 

considered scale, modality, annotation quality, and demographic coverage [7]–[12]. 

3. Summary of key observations 
This section provides an overview of the key findings from the present study, which include the 

structure of the HAR system architecture, application areas, and datasets used, that serve as the 

foundation for evaluation and benchmarking.

3.1 The HAR system architecture 

The fundamental purpose of a Human Action Recognition (HAR) system architecture is to provide a 

structured, multi-stage pipeline that methodically transforms raw, noisy sensor data into high-level, 

interpretable action labels [1]. Its importance lies in establishing a standardized process that ensures 

modularity and reliability. Each stage from data acquisition to final classification serves as a distinct 

processing block, allowing researchers to innovate on specific components, such as feature extraction 

or classification algorithms, while maintaining a coherent end-to-end workflow. This systematic 

approach is crucial for developing robust and accurate systems capable of functioning in complex, real-

world environments [11]. 

A HAR system typically follows a modular pipeline that transforms raw sensor inputs into 



International Journal of Theoretical & Applied Computational Intelligence Vol. 2025   

 309 

interpretable action labels [1]. The pipeline consists of four major stages: data acquisition, 

preprocessing, feature extraction, and classification. This structure ensures modularity, enabling 

innovation at each stage while maintaining an end-to-end framework [2]. 

At the acquisition stage, systems employ multiple sensing modalities including RGB cameras, depth 

sensors, inertial measurement units (IMUs), infrared sensors, and even Wi-Fi-based radio frequency 

devices [3], [4]. The preprocessing stage addresses noise removal, normalization, and temporal 

alignment. 

The feature extraction stage has undergone the most rapid evolution. Traditional handcrafted features 

have been replaced by deep learning models. Convolutional Neural Networks (CNNs) dominate image-

based feature extraction, while Graph Convolutional Networks (GCNs) are widely adopted for skeleton-

based recognition due to their ability to capture spatial–temporal topologies [5], [6]. More recently, 

Transformers have emerged as powerful architectures for multimodal fusion and long-range temporal 

modeling [7], [8]. 

Several architectural innovations highlight this progress. Pose-guided GCNs (PG-GCN) improve 

robustness by integrating body joint relationships into graph learning [6]. Lightweight models such as 

GNet-FHO reduce computational complexity while retaining competitive accuracy [5]. These efforts 

address real-world challenges, including deployment in mobile and embedded platforms. 

Despite these advances, two persistent challenges remain: (i) the interpretability of deep architectures 

and (ii) the reliance on curated datasets, which may not reflect uncontrolled environments [9]. Future 

HAR systems are expected to employ end-to-end trainable architectures with dynamic feedback 

between modules and built-in mechanisms for privacy preservation, uncertainty modeling, and domain 

generalization [3], [10]. 

 

 
Figure 2: Architectural overview of the HAR system, showing sequential processing stages from 

sensor data collection to activity labeling. 
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3.2 Application areas 

The translation of HAR research into practical domains demonstrates its societal value. The primary 

application areas include healthcare, sports analytics, and human–robot interaction (HRI). 

In healthcare, HAR enables diagnostic and monitoring systems. For example, deep learning models 

using pose estimation have been applied to quantify motor impairment in Parkinson’s disease [11], 

while sensor- and vision-based models support early stroke detection [12]. In elderly care, datasets such 

as HDIA capture daily activities to monitor safety and independence [3]. 

In sports, HAR systems provide fine-grained analysis of athletic performance. Architectures such as 

DDC3N and GCN-based frameworks have been used to study tennis serves, CrossFit movements, and 

figure skating sequences [13], [14]. These models not only enhance training outcomes but also support 

injury prevention through biomechanical assessment. 

In HRI, HAR is a critical enabler for collaborative robots (cobots). By integrating game theory and 

fuzzy logic, models predict human intent, allowing robots to adjust behavior dynamically [15]. This 

area has profound implications for industrial safety, interactive gaming, and assistive robotics. 

Key challenges across these domains include the scarcity of domain-specific datasets, difficulties in 

modeling subtle movements (e.g., fine motor impairments), and the need for explainable AI (XAI) to 

ensure trust and transparency [16]. 

 

3.3 Datasets 

Datasets are the foundation of HAR research, providing both training material and standardized 

benchmarks. They fall into two broad categories: benchmark datasets and domain-specific datasets. 

 

3.3.1 Benchmark datasets  

Benchmark datasets play a vital role in HAR research because they serve as a fundamental 

foundation for the development and assessment of models, as illustrated in Table 1. They provide 

controlled settings for testing and comparing algorithms. 

• NTU RGB+D (60/120 classes): Large-scale multimodal dataset including RGB, depth, skeleton, 

and infrared modalities. It is the most widely used benchmark for skeleton-based recognition [6], 

[17]. Its limitations include controlled indoor settings and noise in skeleton sequences. 

• Kinetics (400/600/700): A massive video dataset from YouTube clips, serving as the standard for 

pretraining large-scale deep networks [13]. Challenges include dataset decay (video unavailability) 

and label noise. 

• UCF101 & HMDB51: Classical video benchmarks used for generalization studies. Although 

smaller and limited in diversity, they remain useful for ablation and efficiency testing [18], [19]. 

• Sensor-based datasets (such as WISDM, PAMAP2, UCI-HAR, etc.): Provide accelerometer and 

gyroscope time-series data for wearable device applications [20], [21], [23], [24], [25], [26]. They 

are lightweight but lack contextual information, such as object interactions. 
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Table 1: Summary for benchmark datasets 

Dataset Modality Frame

rate 

Resolu

tion 

Sample/

Class 

Applic

ation 

Scenar

ios 

Tool/Fram

ework 

Classifi

er 

Accu

racy 

Scope 

of Use 

NTU 

RGB+D 

(60/120) 

RGB, 

Depth, 

Skeleton, 

Infrared 

30 FPS 

(typica

l) 

1920×

1080 

(RGB, 

variabl

e) 

~56,000 

clips / 60 

or 120 

classes 

Indoor 

activity 

recogni

tion, 

general 

HAR 

models 

PyTorch, 

OpenPose, 

Open3D 

GCNs, 

Transfor

mers 

Varie

s (up 

to 

96%) 

Bench

mark 

for 

skeleto

n-based 

models; 

limited 

by lab 

setting 

and 

skeleto

n data 

noise. 

Useful 

for 

pose-

based 

HAR 

researc

h. 

Kinetics 

(400/600

/700) 

RGB 

video 

25–30 

FPS 

(varied

) 

Variab

le 

(mostl

y 480–

720p) 

~300K+ 

clips / 

400–700 

classes 

General 

large-

scale 

action 

recogni

tion, 

pre-

training 

TensorFlo

w, PyTorch 

I3D, 

SlowFas

t, ViViT 

~70–

75% 

top-1 

Massiv

e scale; 

suitable 

for pre-

training 

and 

general 

tasks, 

not 

fine-

grained; 

data 

decay 

due to 

YouTu

be 

links. 

UCF101 RGB 

video 

25 FPS 320×2

40 

13,320 

clips / 

101 

classes 

Legacy 

benchm

ark, 

general 

action 

OpenCV, 

Caffe, 

TensorFlo

w 

CNNs, 

Two-

stream 

network

~85–

90% 

Good 

for 

baseline 

testing 

and 
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recogni

tion 

s efficien

cy 

evaluati

on; 

limited 

diversit

y; older 

architec

ture 

support. 

HMDB5

1 

RGB 

video 

30 FPS 320×2

40 

(low 

quality

) 

6,766 

clips / 51 

classes 

Film-

based 

action 

recogni

tion, 

robustn

ess 

testing 

MATLAB, 

Python 

libraries 

SVM, 

3D 

CNNs, 

LSTM 

~60–

70% 

Used to 

test 

robustn

ess on 

poor 

quality 

and 

diverse 

scenes; 

small 

scale 

and 

video 

noise 

make it 

difficult 

for fine-

grained 

analysis

. 

Sensor-

Based 

(WISD

M, etc.) 

Accelero

meter, 

Gyroscop

e (time-

series) 

20–

100 Hz 

N/A ~10,000

–

100,000

+ 

samples 

/ 6–18 

classes 

Fitness 

trackin

g, 

health 

monitor

ing, 

embedd

ed 

systems 

Scikit-

learn, 

TensorFlo

w 

Decisio

n Trees, 

LSTMs, 

CNNs 

~85–

95% 

Lightw

eight, 

privacy

-

preservi

ng use 

in 

wearabl

es; 

lacks 

visual 

context, 

sensitiv

e to 

placem

ent and 

user 

variabil
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ity. 

 

3.3.2 User-generated datasets  

A significant trend in the reviewed literature is the creation of new, specialized datasets designed to 

overcome the limitations of existing benchmarks and address specific research questions. These datasets 

are typically developed in-house by research teams to fill a specific gap. For example, the HADE dataset 

was created to provide a more diverse set of real-world actions than found in many benchmarks [20]. 

The HDIA dataset was developed specifically for privacy-preserving elderly care, using IR cameras 

and wearable sensors to avoid capturing identifiable information [3]. Similarly, the NOL-18 Exercise 

dataset was created to provide labeled data for the specific task of counting exercise repetitions [16], 

and the CrossFit/Figure Skating datasets were built to enable fine-grained analysis of complex athletic 

movements [15]. The primary advantage of user-generated datasets is their high relevance to a specific 

problem, providing data that is much better suited for training specialized models. However, they are 

often smaller in scale than large benchmarks and may have inherent biases based on the specific 

collection environment and participant pool. 

 

3.3.3 Summary comparing HAR datasets  

Recent advances in HAR datasets have substantially contributed to the field by enabling the 

development of more accurate and robust systems. Benchmark and domain-specific datasets have 

improved in capturing complex human actions, interactions, and subtle variations. However, critical 

challenges remain. Dataset diversity, representativeness, and real-world complexity are often 

insufficient, limiting the generalization of HAR models across different populations, environments, and 

sensor types [3], [20]. Future dataset development should prioritize: 

1. Inclusivity: Incorporating a broad range of participants, demographics, and body types. 

2. Real-world complexity: Including occlusions, multi-person interactions, variable lighting, and 

diverse environments. 

3. Privacy-preserving data acquisition: Utilizing methods such as silhouette representations, 

anonymized skeletons, or edge-based data processing to minimize sensitive information 

exposure [22], [23]. 

These improvements are expected to enhance the universality, precision, and adaptability of HAR 

systems 

3.4 Techniques/Algorithms 

HAR research has evolved from classical machine learning methods to advanced deep learning 

architectures, as illustrated in Table 2. Algorithmic progress can be categorized as follows: 

 

3.4.1 Supervised learning: 
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Supervised learning remains the dominant paradigm in HAR, where models are trained on labeled 

datasets. Traditional classifiers, such as Support Vector Machines (SVM) and Random Forests (RF), 

often perform robustly on sensor-based datasets with handcrafted features. For example, [4] 

demonstrated that classical models can outperform deep learning methods in cross-subject scenarios 

due to better generalization. In medical applications, [8] used Logistic Regression and Decision Trees 

for stroke detection from neuroimaging. 

 

3.4.2 Human–Robot Interaction (HRI) 

HRI tasks require algorithms that model human intent and ensure safe collaboration. [6] introduced 

a cobot decision-making framework that combines game theory with intuitionistic fuzzy sets, allowing 

robots to account for human hesitation and subjective risk perception. This approach is critical for 

shared workspaces, enhancing both safety and human-like behavior. 

 
3.4.3 Silhouette sequences 

Silhouette sequences are commonly used due to their computational efficiency and privacy 

preservation. [22] proposed Polygon Coding, a method that converts 2D silhouettes into polygonal 

representations and encodes geometric properties into fixed-length feature vectors. This eliminates 

variable sequence length issues without relying on recurrent architectures. 

 

3.4.4 Computational modeling 

Efficient computation is essential for edge deployment. Lightweight architectures, such as GNet-

FHO, employ Ghost Networks and Fire-Hawk Optimizers to optimize feature selection on wearable 

sensors [5]. Similarly, Lightweight Video Vision Transformers (LWV-ViT) use spatial-temporal 

pruning and cross-temporal token interactions for efficient video recognition on edge devices [27]. 

3.4.5 Graph-based approaches 

Graph Convolutional Networks (GCNs) are well-suited for skeleton-based HAR due to their ability 

to model spatial–temporal joint dependencies. [7] introduced Pose-Guided GCN (PG-GCN), which 

integrates 2D pose information with 3D skeletons via dynamic attention. In domain-specific contexts, 

[14] applied GCNs to analyze tennis movements with high precision. 

 

3.4.6 Deep learning architectures 

The vast majority of modern HAR systems are built on various deep learning architectures. 

• CNNs and RNNs: Hybrid CNN-RNN models, such as Multichannel CNN-GRU [28] and CNN-

LSTM with Self-Attention [25], extract spatial features and model temporal dependencies from 

sensor data. 

• Transformers: Self-attention and cross-attention mechanisms excel in multimodal fusion. The 

SSRT model [2] fuses skeleton and RGB data for fine-grained human-object interaction (HOI), 

while [18] employs Transformers to learn 3D skeletal representations directly from meshes. 

• Specialized Networks: Examples include ResNet-SE for complex activity recognition from 

wearable sensors [26] and DDC3N, a Doppler-driven 3D CNN for high-precision sports 

analytics [15]. 
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3.5 Open challenges and limitations 

Despite significant progress, the field of HAR systems faces multiple challenges. 

 

3.5.1 Data collection and pre-processing  

Collecting and annotating datasets are time-consuming, costly, and prone to noise. Sensor and 

imaging data are affected by device variability, environmental factors, and acquisition conditions [23], 

[29]. Preprocessing, such as filtering and normalization, is essential to create clean input for learning 

algorithms [24]. 

 

3.5.2 Dataset modeling and generalization 

HAR models often suffer from domain shift, performing poorly on unseen subjects or environments. 

[4] demonstrated substantial cross-subject performance drops. Large-scale, diverse datasets like HADE 

[20] and HDIA [3] aim to mitigate this by providing varied training examples. 

 

Table 2: Summary of literature on HAR techniques 

Authors Contributions 

[6] 

Proposes a cobot action decision-making method based on intuitionistic fuzzy sets and game 

theory for HRC. 

[4],[32] 

Compares cross-subject performance of traditional ML and deep learning models on HAR 

datasets. 

[30] 

Develops an angular features-based HAR system for real-world applications with subtle 

unit actions. 

[18] Learns a 3D skeletal representation from a Transformer architecture for action recognition. 

[28] Proposes a multichannel CNN-GRU model for sensor-based human activity recognition. 

[26] 

Develops a ResNet-SE channel attention-based deep residual network for complex activity 

recognition. 

[10] 

Creates an automatic detection pipeline for assessing the motor severity of Parkinson's 

disease. 

[25] Proposes a deep CNN-LSTM with a self-attention model for HAR using wearable sensors. 

[13]  

Proposes a framework for learning spatial affordances from 3D point clouds to map unseen 

human actions. 

[8] 

Develops a machine learning-based diagnostic model using neuroimages for stroke 

identification. 

[15] 

Proposes a Doppler-Driven 3D CNN (DDC3N) for HAR, with new datasets for CrossFit 

and Figure Skating. 

[17] Provides a comprehensive survey of RGB-based and skeleton-based HAR methods. 

[24] Proposes a multi-stream TCN-based approach with ECA-Net for sensor-based HAR. 
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3.5.3 Open-access and commercial tools 

Open-source tools like OpenPose provide flexible pose estimation pipelines [11], while commercial 

sensors, e.g., Microsoft Kinect, enabled widespread skeleton-based HAR [9]. Researchers must balance 

cost, flexibility, and technical complexity when choosing tools. 

 

3.5.4 Video frame analysis 

Processing video data is computationally intensive. Techniques such as frame sampling or action 

segmentation are employed to reduce redundancy. For instance, [16] segmented repetitive exercises 

into unit actions, while multimodal fusion (RGB + skeleton) resolves ambiguities in human-object 

interactions [2]. 

 

3.5.5 Performance metrics 

Accuracy alone can be misleading, particularly in class-imbalanced or safety-critical applications. A 

combination of precision, recall, F1-score, and task-specific metrics (e.g., ROC, AUC for medical 

diagnosis) is increasingly recommended [5], [8] as illustrated in Table 3. 

 

Table 3: Overview of datasets and evaluation metrics in recent HAR studies 

Authors Datasets Evaluation Metrics 

[8] Custom CT Image Dataset Accuracy, Precision, Recall, F1-score, ROC, 

AUC 

[23] mHealth, PAMAP2, UCIDSADS Accuracy, F1-score, Confusion Matrix 

[5] WISDM, Motion Sense, UCI-HAR Accuracy, Precision, Recall, F1-score 

[12] StanWiFi, MultiEnvironment Accuracy, Precision, Recall, F1-score 

[2] Toyota Smarthome, ETRI-Activity3D Accuracy, Precision, Recall, F1-score 

 

In specialized applications like stroke detection, even more advanced metrics like the Receiver 

Operating Characteristic (ROC) curve and the Area Under the Curve (AUC) are used to assess the 

diagnostic power of a model across different thresholds [8]. 
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Table 4: HAR taxonomy 

S/N Techniques Application Explanation 

1.  Computational 

Modeling 

Dynamic Real-time FPGA-based devices can recognize human 

actions. Intelligent settings, human-machine 

communications, and security systems utilize this 

technology. 

2.  Silhouette 

Sequence Point 

Clouds 

Dynamic This approach analyzes the time sequence of the camera 

silhouettes. They have built action-based spaces. The 

activities and shape information were recognized using 

3-D point clouds. 

3.  Graph-based 

approach 

Static Classification of human behavior based on graphs. This 

model maintains a complex spatial arrangement of the 

joints in the body by considering how they move and 

change over time. 

4.  Human motion 

understanding 

for HRI [32] 

Dynamic New hardware for action recognition based on two-

stream neural networks. This design delivers the same 

accuracy as existing baseline models with fewer 

operations. 

5.  Deep Learning 

Architectures 

Dynamic This includes various architectures like CNN-LSTM, 

GCNs, and Transformers to capture complex spatial and 

temporal patterns in HAR data. 

6.  Pre-trained 

CNNs 

Dynamic Combines class-based and instance-based success rates 

to assess transfer models. All class- and instance-based 

NASNet-Large parameterize the ABC-optimized CNN. 

 

4. Highlighted open problems and research gaps in HAR 

 
This section synthesizes current challenges and critical gaps remaining within the HAR field. Table 

4 provides a taxonomy of prominent HAR techniques, differentiating them by their underlying 

computational modeling, application type (static/dynamic), and mechanism, thereby underscoring the 

diversity and complexity of the current solution landscape. Despite the advancements outlined in this 

taxonomy, fundamental limitations persist, particularly concerning data heterogeneity and labeling, 

robustness and generalization, and real-time resource efficiency, which are discussed in detail in the 

following subsections. 

 

4.1 Cross-subject and cross-dataset generalization 

Despite the growth of large-scale HAR datasets, models still struggle to generalize across unseen 

subjects, environments, or devices. Current deep learning systems often overfit training datasets, 

limiting real-world deployment. Future research should focus on domain generalization, federated 

learning, and subject-invariant feature extraction to create models that are robust to inter-subject 

variability and adaptable to new contexts [4][20]. Developing standardized benchmarks specifically 
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targeting cross-subject evaluation could further guide the community in addressing this challenge. 

 

4.2 Multimodal fusion for heterogeneous inputs 

While multimodal fusion is increasingly adopted, most existing systems rely on simple 

concatenation or late-fusion strategies. There is a critical need for dynamic, context-aware fusion 

techniques, such as cross-attention or co-attention mechanisms, which allow different modalities (RGB, 

skeleton, sensor, audio) to influence each other throughout the pipeline [2][18]. Research in flexible, 

transformer-based architectures that can handle a variable number of modalities, rather than being fixed, 

is still an open area that could significantly enhance recognition performance and robustness. 

 

4.3 Data scarcity and synthetic data generation 

Many specialized HAR applications, such as healthcare monitoring or sports analytics, suffer from 

insufficient labeled data. Few-shot and zero-shot learning methods are promising but still immature. 

There is a need for high-fidelity synthetic data pipelines using advanced generative models (GANs, 

diffusion models) to simulate diverse human actions under variable environmental and sensor 

conditions [16][17]. Future research should focus on creating automatically labeled, privacy-preserving 

synthetic datasets to reduce manual data collection effort and enable robust model training for rare or 

domain-specific actions. 

 

5. Conclusion and future work 

 
This paper has provides a comprehensive analysis of 30 HAR studies published between 2022–

2025, highlighting the transition from generalized, single-modality models to specialized, multimodal 

architectures designed for real-world deployment. Key trends include the dominance of deep learning 

models (GCNs, Transformers), the growing importance of multimodal fusion, and increasing focus on 

domain-specific applications in healthcare, sports analytics, and human-robot interaction. Despite 

progress, significant challenges persist: 

1. High computational cost of state-of-the-art models. 

2. Scarcity of large-scale, diverse, unbiased datasets. 

3. Cross-subject and cross-dataset generalization. Future research directions include:  

• Advanced multimodal fusion: Moving beyond concatenation or late-fusion to cross-attention and 

co-attention models that allow dynamic interaction between RGB, skeleton, sensor, and audio 

modalities. Developing flexible Transformer architectures capable of handling variable modality 

inputs can significantly enhance robustness. 

• Generalization and fairness: Prioritize cross-subject and cross-dataset generalization using 

regularization, domain generalization, and federated learning approaches to train models on 

decentralized data without compromising privacy. Address algorithmic biases related to gender, 

age, skin tone, and physical ability for equitable deployment. 

• Data scarcity: Expand the use of few-shot and zero-shot learning and develop synthetic data 

pipelines using GANs or diffusion models to generate diverse, automatically labeled datasets for 

rare or specialized actions. 

• Domain-specific real-time applications: Build interactive healthcare systems for rehabilitation 



International Journal of Theoretical & Applied Computational Intelligence Vol. 2025   

 319 

and adaptive cobots in HRI, emphasizing lightweight models for real-time edge deployment 

without sacrificing accuracy. 

In conclusion, advancing multimodal fusion, ensuring fairness, solving data scarcity, and developing 

efficient domain-specific systems will propel HAR toward creating safer, more intelligent, and 

adaptable environments. 

 

 

Funding: No specific funding received for this research. 

Data Availability: This work is primarily theoretical, and consequently, neither a novel dataset nor an 

existing benchmark dataset was utilized to substantiate the reported findings. 

Conflicts of Interest: No conflict of interest is stated by the author. 

Ehical consideration: Not applicable.  

Authors contributions. Conceptualization: USB, SBA; methodology: USB, SBA, validation: USB, 

SBA; writing—original draft preparation, USB, SBA; writing—review and editing: SBA; visualization:  

USB, SBA; supervision: SBA; project administration: SBA; The author had approved the final version. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Theoretical & Applied Computational Intelligence Vol. 2025   

 320 

 

 

 

References 

 
[1]    Karim, M., Khalid, S., Aleryani, A. et al., (2024). "Human action recognition systems: a review of the trends 

and state-of-the-art". IEEE Access, 12, 36372-36390. 

[2]  Ghimire, A., Kakani, V., and Kim, H. (2023). "SSRT: A sequential skeleton rgb transformer to recognize 

fine-grained human-object interactions and action recognition". IEEE Access, 11, 51930-51948. 

[3]   Park, J., Ok Yang, K., Park, S. et al., (2025). "Human daily indoor action (hdia) dataset: privacy-preserving 

human action recognition using infrared camera and wearable armband sensors". IEEE Access, 13, 60822-

60832. 

[4]   Yang, Z., Qu, M., Pan, Y. et al., (2022). "Comparing cross-subject performance on human activities 

recognition using learning models". IEEE Access, 10, 95179-95196. 

[5]  Athota, R. K., and Sumathi, D. (2024). "GNet-FHO: A light weight deep neural network for monitoring human 

health and activities". IEEE Access, 12, 108484-108503. 

[6]    Liu, B., Fu, W., Wang, W. et al., (2022). "Research on cobot action decision-making method based on 

intuitionistic fuzzy set and game theory". IEEE Access, 10, 103349-103363. 

[7]    Chen, S., Xu, K., Mi, Z. et al., (2022). "Dual-domain graph convolutional networks for skeleton-based action 

recognition". Machine Learning, 111(7), 2381-2406. 

[8]   Saleem, M. A., Javeed, A., Akarathanawat, W. et al., (2024). "Innovations in stroke identification: a machine 

learning-based diagnostic model using neuroimages". IEEE Access, 12, 35754-35764. 

[9]    Fang, X., and Guo, Y. (2024). "Human animation model generation in traffic accident restoration: human 

action recognition based on improved dtw algorithm". IEEE Access, 12, 107570-107582. 

[10] Yang, N., Liu, D., Liu, T. et al., (2022). "Automatic detection pipeline for accessing the motor severity of 

parkinson’s disease in finger tapping and postural stability". IEEE Access, 10, 66961-66973. 

[11] Gupta, C., Gill, N. S., Gulia, P. et al., (2024). "A real-time 3-dimensional object detection based human action 

recognition model". IEEE Open Journal of the Computer Society, 5, 14-26. 

[12] Jannat, M. K. A., Islam, M. S., Yang, S. et al., (2023). "Efficient Wi-Fi-based human activity recognition 

using adaptive antenna elimination". IEEE Access, 11, 105440-105454. 

[13]  Piyathilaka, L., Kodagoda, S., Thiyagarajan, K. et al., (2024). "Learning spatial affordances from 3d point 

clouds for mapping unseen human actions in indoor environments". IEEE Access, 12, 868-877. 

[14] Zhang, X., and Chen, J. (2023). "A tennis training action analysis model based on graph convolutional neural 

network". IEEE Access, 11, 113264-113271. 

[15] Toshpulatov, M., Lee, W., Lee, S. et al., (2024). "DDC3N: Doppler-driven convolutional 3d network for 

human action recognition". IEEE Access, 12, 93546-93567. 

[16] Cheng, S., Sarwar, M. A., Daraghmi, Y. et al., (2023). "Periodic physical activity information segmentation, 

counting and recognition from video". IEEE Access, 11, 23019-23031. 

[17]  Wang, C., and Yan, J. (2023). "A comprehensive survey of rgb-based and skeleton-based human action 

recognition". IEEE Access, 11, 53880-53898. 

[18]  Cha, J., Saqlain, M., Kim, D. et al., (2022). "Learning 3d skeletal representation from transformer for action 

recognition". IEEE Access, 10, 67541-67550. 

[19]  Xu, Q., Yang, J., Zhang, H. et al., (2024). "Enhancing few-shot action recognition using skeleton temporal 



International Journal of Theoretical & Applied Computational Intelligence Vol. 2025   

 321 

alignment and adversarial training". IEEE Access, 12, 31745-31755. 

[20]  Karim, M., Khalid, S., Aleryani, A. et al., (2024). "HADE: exploiting human action recognition through 

fine-tuned deep learning methods". IEEE Access, 12, 42769-42790. 

[21] Huang, K., Mckeever, S., and Miralles-Pechuán, L. (2024). "Generalized zero-shot learning for action 

recognition fusing text and image GANs". IEEE Access, 12, 5188-5202. 
[22]  Göçmen, O., and Akata, M. E. (2023). "Polygonized silhouettes and polygon coding based feature 

representation for human action recognition". IEEE Access, 11, 57021-57036. 

[23] Sharif, U., Mehmood, Z., Mahmood, T., Javid, M. A., et al., (2019). "Scene analysis and search using local 

features and support vector machine for effective content-based image retrieval". Artificial Intelligence 

Review, 52, 901-925. https://doi.org/10.1007/s10462-018-9636-0 

[24]  Miah, A. S. M., Hwang, Y. S., and Shin, J. (2024). "Sensor-based human activity recognition based on multi-

stream time-varying features with ECA-Net dimensionality reduction". IEEE Access, 12, 151649-151668. 

[25] Khatun, M. A., Yousuf, M. A., Ahmed, S. et al., (2022). "Deep CNN-LSTM with self-attention model for 

human activity recognition using wearable sensor". IEEE Journal of Translational Engineering in health  

and Medicine, 10, 1-16. 
[26] Mekruksavanich, S., Jitpattanakul, A., Sitthithakerngkiet, K. et al., (2022). "ResNet-SE: channel attention-

based deep residual network for complex activity recognition using wrist-worn wearable sensors". IEEE 

Access, 10, 51142-51154. 

[27]  Han, J., Zhao, J., Yue, Y. et al., (2024). "Edge computing-based video action recognition method and its 

application in online physical education teaching". IEEE Access, 12, 148666-148676. 

[28]  Lu, L., Zhang, C., Cao, K. et al., (2022). "A multichannel CNN-GRU model for human activity recognition". 

IEEE Access, 10, 66797-66810. 

[29]  Man, K., Chahl, J., Mayer, W. et al., (2024). "The effects of different image parameters on human action 

recognition models trained on real and synthetic image data". IEEE Access, 12, 95223-95244. 
[30] Ryu, J., Patil, A. K., Chakravarthi, B. et al., (2022). "Angular features-based human action recognition system 

for a real application with subtle unit actions". IEEE Access, 10, 9645-9657. 

[31] Abdullahi, S.B., and Chamnoongthai, K. (2022). "American sign language words recognition using 

spatio-temporal prosodic and angle features: A sequential learning approach". IEEE Access, 10, 

15911-15923. 

[32] Abdullahi, S.B., and Chamnoongthai, K. (2023). "IDF-sign: Addressing inconsistent depth features for 

dynamic sign word recognition". IEEE Access, 11, 88511-88526. 

[33] Alamri, F.S., Abdullahi, S.B., Rehman, A.K., and Saba, T. (2024). "Enhanced weak spatial modeling 

through CNN-based deep sign language skeletal feature transformation". IEEE Access, 12, 77019-

77040. 

 

 

 

 

 

 

 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=s5DdeaYAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=s5DdeaYAAAAJ:Se3iqnhoufwC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=s5DdeaYAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=s5DdeaYAAAAJ:Se3iqnhoufwC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=s5DdeaYAAAAJ&sortby=pubdate&citation_for_view=s5DdeaYAAAAJ:4TOpqqG69KYC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=s5DdeaYAAAAJ&sortby=pubdate&citation_for_view=s5DdeaYAAAAJ:4TOpqqG69KYC


International Journal of Theoretical & Applied Computational Intelligence Vol. 2025   

 322 

 

 

 

Appendix A 
LIST OF ABBREVIATIONS 

Abbreviation Full Name 

HAR Human Action Recognition 

HOI Human-Object Interaction 

ML Machine Learning 

DL Deep Learning 

GCN Graph Convolutional Network 

CNN Convolutional Neural Network 

RNN Recurrent Neural Network 

LSTM Long Short-Term Memory 

GRU Gated Recurrent Unit 

IMU Inertial Measurement Unit 

IR Infrared 

CSI Channel State Information 

DTW Dynamic Time Warping 

S-SVM Structured Support Vector Machine 

GZSAR Generalized Zero-Shot Action Recognition 

LOSO Leave-One-Subject-Out 

PD Parkinson's Disease 

HRC Human-Robot Collaboration 
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