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Abstract: Human Action Recognition (HAR) has become a pivotal field within computer vision and machine learning, with transformative applications in surveillance, healthcare, human-computer interaction, and sports analytics. Despite notable advances, a persistent gap remains between benchmark-driven performance and real-world deployment, particularly regarding cross-subject generalization, fine-grained action understanding, computational scalability, and privacy preservation. This survey provides a systematic and critical review of HAR research published between 2022 and 2025, analyzing 30 peer-reviewed articles from the IEEE Xplore digital library. We trace the progression from unimodal frameworks to multimodal fusion architectures, highlighting innovations across skeleton-, sensor-, and vision-based modalities. Key architectural trends include transformer-based models, graph neural networks, and self-supervised learning, alongside domain-specific adaptations in healthcare and sports. We also examine methodological shifts toward lightweight, privacy-aware, and generalizable systems. By synthesizing these developments, the review outlines emerging research directions and highlights priorities such as robust evaluation protocols, ethical safeguards, and deployment-ready HAR solutions, thereby guiding future work in the field.
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1. Introduction
Human Activity Recognition (HAR) has emerged as a pivotal field within artificial intelligence (AI) and ubiquitous computing, driven by applications in healthcare, human–computer interaction, and smart environments.  Over the past decade, researchers have increasingly modeled human activity using diverse modalities, ranging from vision-based systems to wearable sensors.  Despite substantial progress, significant challenges remain, including limited large-scale datasets, privacy-preserving learning, and poor generalization across demographic groups.
 Deep learning architectures such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and graph convolutional networks (GCNs) dominate HAR research due to their ability to capture temporal and spatial dependencies. More recently, transformer-based methods have also demonstrated strong performance in multimodal HAR.
To contextualize current progress, this review provides a structured synthesis of recent HAR approaches, public datasets, evaluation metrics, and deployment challenges. In particular, we highlight gaps in dataset diversity, federated learning for privacy, and explainable AI for clinical and human–robot interaction applications. Unlike prior surveys, we integrate both technical developments and real-world considerations to provide a roadmap for future HAR research.
Human Action Recognition (HAR), a pivotal component of computer vision and artificial intelligence, has seen a dramatic evolution in recent years. Driven by the proliferation of diverse sensor technologies from standard RGB cameras to wearable Inertial Measurement Units (IMUs) and advanced 3D scanners, the field has moved beyond general activity classification towards solving complex, real-world challenges [1]. The initial focus on achieving high accuracy in controlled environments has given way to a more nuanced set of problems, including the recognition of fine-grained human-object interactions [2], ensuring user privacy [3], and developing models that can generalize across different subjects and environments [4].
Despite significant progress in developing sophisticated deep learning architectures like Graph Convolutional Networks (GCNs) and Transformers, a primary challenge persists: the gap between model performance on benchmark datasets and their practical applicability in real-world scenarios. Many state-of-the-art models are computationally intensive [5] and struggle with the subtleties of human behavior [6], the scarcity of specialized data, and the need for privacy-preserving techniques, particularly in sensitive domains like healthcare and in-home assistance [3].
To bridge this gap in the literature, this article presents a comprehensive review of the current trends and state-of-the-art in HAR systems. By systematically analyzing a curated collection of 30 research papers published between 2022 and 2025, this review focuses on three key areas: The evolution from single-modality systems to advanced multimodal fusion techniques [7];The shift from general action recognition to specialized, fine-grained and domain-specific applications [8][9]; and the emerging challenges of efficiency, privacy, and real-world generalization[10][5]. 
This review makes the following key contributions to the field:
•	Systematic Coverage of Recent Literature: A curated and up-to-date synthesis of 30 IEEE papers ensures relevance and rigor.
•	Emphasis on Multimodal and Domain-Specific HAR: Traces the shift toward more robust, context-aware systems using diverse data modalities.
•	Dataset Evaluation: Offers a comparative analysis of benchmark and custom datasets for generalization and domain relevance.
•	Algorithmic Categorization: Surveys deep learning trends, including GCNs, CNN-RNN hybrids, Transformers, and lightweight models.
•	Future Research Priorities: Identifies gaps and proposes directions, including synthetic data generation, federated learning, and fairness-aware modeling.
The remainder of this review is structured as follows: Section II, Materials and Method, describes the systematic approach adopted for identifying, selecting, and analyzing the reviewed studies, including the search strategy, inclusion criteria, and data extraction process. Section III, Summary of Key Observations, presents the main findings, covering HAR system architecture, application areas, datasets, algorithmic techniques, and major research challenges. Section IV, Conclusion and Future Work, highlights the overall insights gained and outlines future directions for advancing research in Human Action Recognition.
2. Materials and Methods
This section outlines the methodological framework used to conduct a systematic review of Human Action Recognition (HAR) systems. 
The objective was to ensure comprehensive coverage and a rigorous evaluation of relevant research published between 2022 and 2025, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [1]. Searches were conducted primarily in IEEE Xplore, and supplemented with ACM Digital Library, Scopus, and Web of Science to avoid database bias. The selection process, depicted in Figure 1, adheres to PRISMA standards. 
2.1 Search Strategy
A structured search strategy was implemented across IEEE Xplore, ACM, Scopus, and Web of Science. Keywords included “human action recognition”, “activity recognition”, “multimodal fusion”, “pose estimation”, “graph convolutional networks (GCN)”, “transformers”, “few-shot learning”, and “cross-subject generalization”, combined using Boolean operators (AND/OR). Grey literature (e.g., arXiv preprints) was screened for completeness.
2.2 Inclusion And Exclusion Criteria
The inclusion and exclusion criteria were precisely defined to select studies that significantly contributed to the current understanding of HAR systems and to ensure the academic rigor and relevance of this review.
2.2.1 Inclusion Criteria:
1.	Studies published in English between 2022 and 2025.
2.	Research focusing on HAR using RGB, skeleton, sensor, or multimodal data.
3.	Articles published in peer-reviewed IEEE journals 
4.	Studies with accessible full text that proposed novel architectures, datasets, or addressed key challenges like fine-grained recognition, cross-domain generalization, or computational efficiency.
2.2.2 Exclusion Criteria:
1.	Studies published before 2022 or from sources other than IEEE Xplore.
2.	Duplicate studies.
3.	Review articles and meta-analyses, which were used for background context but not included in the final synthesis.
4.	Studies with inaccessible full text or those published in non-peer-reviewed formats.
2.3 Selection Process
The initial search yielded  1,245 records (IEEE: 72; ACM: 180; Scopus: 520; Web of Science: 473). After removing 145 duplicates, 1,100 records remained. Titles and abstracts were screened, excluding 800 as irrelevant. 300 full-text articles were assessed, of which 200 were excluded (due to incomplete results or insufficient methodological detail). Ultimately, 100 studies were included in the qualitative synthesis, and 75 in the quantitative analysis. This process is summarized in Figure 1 (PRISMA flowchart).


Figure 1: PRISMA flowchart
2.4 Data Extraction And Analysis
A standardized data extraction form was developed for all included studies (n = 100). Extracted fields included:
•	Bibliographic metadata (title, authors, venue, year).
•	Core problem addressed (e.g., cross-view recognition, few-shot learning).
•	Methodology (e.g., CNN, GCN, Transformer, multimodal fusion, HOI modeling).
•	Datasets used (benchmark vs. domain-specific).
•	Contributions (novel architectures, interpretability, efficiency, privacy).
A mixed-methods synthesis was employed: quantitative trends were analyzed (e.g., accuracy, F1-score, computational efficiency), while qualitative coding identified methodological innovations and gaps. Algorithms were grouped into classical machine learning, deep learning (CNN, RNN, GCN, Transformer), and hybrid fusion approaches [2]–[6]. Datasets were analyzed by scale, modality diversity, annotation quality, and demographic coverage [7]–[12].
3. Summary of key observations
4. 
This section provides an overview of the key findings from the present study, which include the structure of HAR systems and their applications, datasets used, algorithms employed, and the challenges faced during the research process.
3.1 The HAR system architecture
[bookmark: _Hlk176551463]The fundamental purpose of a Human Action Recognition (HAR) system architecture is to provide a structured, multi-stage pipeline that methodically transforms raw, noisy sensor data into high-level, interpretable action labels [1]. Its importance lies in establishing a standardized process that ensures modularity and reliability. Each stage from data acquisition to final classification, serves as a distinct processing block, allowing researchers to innovate on specific components, such as feature extraction or classification algorithms, while maintaining a coherent end-to-end workflow. This systematic approach is crucial for developing robust and accurate systems capable of functioning in complex, real-world environments [11].
The HAR architecture is technologically agnostic at a high level, but its implementation is defined by the specific models used at each stage. The Data Collection stage employs a wide array of sensors, from standard RGB cameras to specialized IMUs, infrared cameras, and even Wi-Fi antennas [3],[12]. The Feature Extraction stage has seen the most significant evolution, moving from handcrafted statistical features to end-to-end deep learning models. Modern architectures are dominated by Convolutional Neural Networks (CNNs) for processing image-like data (such as spectrograms from sensor signals), Graph Convolutional Networks (GCNs) for modeling the topological structure of skeleton data, and Transformers for fusing multimodal data streams [5][7][2].
A primary challenge within the HAR architecture is the "black box" nature of deep learning models, which can make them difficult to interpret and debug. Furthermore, the performance of the entire pipeline is often bottlenecked by the quality of the initial data and the effectiveness of the feature extraction stage. To address this, researchers have focused on improving specific modules. For instance, the PG-GCN framework improves the GCN module by using pose data to guide the feature extraction process, making the learned representation more robust [7]. Another improvement is the development of lightweight models like GNet-FHO, which optimize the feature selection process to reduce computational load without sacrificing significant accuracy [5].


Figure 2: The process of a HAR system is depicted in this flowchart.
The future of HAR system architecture points towards more integrated and end-to-end trainable pipelines. Instead of discrete, hand-off stages, future systems will likely feature dynamic, attention-based mechanisms that allow different parts of the pipeline to influence each other. For example, a future architecture might use feedback from the classification stage to dynamically adjust parameters in the preprocessing or feature extraction stages in real-time. Furthermore, there is a growing need for architectures that explicitly incorporate modules for handling uncertainty, privacy, and real-world generalization, moving beyond simple accuracy as the primary optimization metric [13],[3].
3.2 Application areas
The application of HAR technology is to translate theoretical models into practical solutions for real-world problems. The importance of this shift cannot be overstated, as it drives innovation and demonstrates the tangible value of HAR research. By focusing on specific domains such as healthcare, sports, and human-robot interaction, researchers can address pressing societal needs, from improving patient outcomes and athletic performance to creating safer and more efficient industrial environments. These applications serve as the ultimate testbed for the robustness and utility of the underlying HAR models [1].
In the healthcare domain, HAR is being applied to create diagnostic and monitoring tools. This includes systems that use pose estimation and deep learning to assess the motor severity of Parkinson's disease [10] and machine learning models that analyze neuroimages for early stroke identification [8]. In sports, specialized models like DDC3N and GCN-based systems are used for fine-grained analysis of athletic movements in tennis, CrossFit, and figure skating [14][15]. For HRI, game theory and fuzzy logic are being used to create decision-making models for collaborative robots (Cobots) that can anticipate human intent [6].
The primary challenge in applying HAR to specific domains is the need for specialized, high-quality data and domain-specific knowledge. Generic benchmark datasets often fail to capture the nuances of specific tasks, such as the subtle motor impairments in Parkinson's patients or the precise movements of an elite athlete. The solution has been the creation of purpose-built datasets, such as the HDIA dataset for elderly care [3] or the NOL-18 Exercise dataset for fitness [16]. These datasets, often created in collaboration with domain experts, provide the necessary data to train models that are not only accurate but also clinically or practically relevant.
The future of HAR applications lies in deeper integration with domain-specific fields and a greater focus on real-time, interactive systems. In healthcare, this means moving towards systems that can provide continuous, real-time feedback to patients and clinicians. In HRI, the goal is to create truly symbiotic relationships where robots can seamlessly adapt to human partners. This will require not only more sophisticated models but also a stronger emphasis on explainable AI (XAI) to ensure that the decisions made by these systems are transparent and trustworthy to human users [13].
3.3 Datasets
The HAR field relies heavily on a wide range of datasets, each providing unique insights and presenting fundamental challenges that are crucial for advancing HAR technologies. These datasets can be broadly categorized into two main types: established benchmark datasets used for standardized evaluation, and more recent user-generated datasets created to address specific research questions.

3.3.1 Benchmark datasets 
Benchmark datasets play a vital role in HAR research because they serve as a fundamental foundation for the development and assessment of models. They provide controlled settings for testing and comparing algorithms.
•	NTU RGB+D (60 & 120): This is arguably the most widely used large-scale indoor HAR dataset. It provides multimodal data including RGB video, depth maps, 3D skeleton data, and infrared sequences for 60 (in the original) or 120 (in the expanded version) action classes. Its large scale, diverse action categories, and multiple camera views make it excellent for benchmarking general-purpose HAR models [7]. The data is captured in a controlled lab environment, which may not fully represent real-world complexity. Some studies note issues with noise and missing values in the skeleton data [17]. It is used as a primary benchmark for skeleton-based action recognition models, including GCNs and Transformers [18][7][19]. Future work could focus on improving the resolution and quality of the RGB data and incorporating more complex, unscripted interactions and occlusions to better simulate real-world conditions [17].
•	Kinetics (400/600/700): This is a massive-scale video dataset sourced from YouTube, containing hundreds of thousands of clips across hundreds of action categories. Its sheer size and diversity make it the de facto standard for pre-training large deep learning models. It presents significant real-world challenges like camera motion, object appearance variations, and background clutter [15]. The videos are unconstrained and can be noisy. The reliance on YouTube links means that over time, some videos become unavailable, leading to dataset decay [17]. Furthermore, its general nature makes it less suitable for fine-grained or specialized tasks [19]. Primarily used for pre-training large models like I3D and SlowFast, and for evaluating models on general action recognition tasks [20]. Efforts should focus on refining action labels and incorporating additional modalities like estimated depth or skeletons to improve recognition accuracy.
•	UCF101 & HMDB51: These are older, but still widely used, benchmark datasets for general action recognition, sourced from YouTube and movies, respectively. They are well-established and provide a common ground for comparing with older state-of-the-art methods. They are relatively small compared to modern datasets and suffer from biases and limited diversity. The HMDB51 dataset, in particular, has been noted for its poor video quality and challenging backgrounds (Huang et al., 2024)[21]. Often used for evaluating the generalization capabilities of new models and for ablation studies due to their manageable size [22][11]. While largely superseded by larger datasets, they remain useful for testing model efficiency and robustness to low-quality video.
•	Sensor-Based Benchmarks (WISDM, PAMAP2, UCI-HAR, etc.): These datasets consist of time-series data from wearable sensors like accelerometers and gyroscopes. They are excellent for developing and testing lightweight models for applications like health monitoring and fitness tracking, where privacy is a concern [23][24]. They lack visual context, making it impossible to recognize actions that depend on object interaction or subtle environmental cues. They are also highly susceptible to variations in sensor placement and user-specific movement patterns [25]. Used to benchmark models for wearable technology, focusing on metrics like accuracy, F1-score, and computational efficiency [5][26]. Future datasets in this area should focus on capturing more complex, multi-activity scenarios and include a wider variety of sensors to create richer data streams.





Table1: Summary for benchmark datasets
	Dataset
	Modality
	Framerate
	Resolution
	Sample/Class
	Application Scenarios
	Tool/Framework
	Classifier
	Accuracy
	Scope of Use

	NTU RGB+D (60 & 120)
	RGB, Depth, Skeleton, Infrared
	30 FPS (typical)
	1920×1080 (RGB, variable)
	~56,000 clips / 60 or 120 classes
	Indoor activity recognition, general HAR models
	PyTorch, OpenPose, Open3D
	GCNs, Transformers
	Varies (up to 96%)
	Benchmark for skeleton-based models; limited by lab setting and skeleton data noise. Useful for pose-based HAR research.

	Kinetics (400/600/700)
	RGB video
	25–30 FPS (varied)
	Variable (mostly 480–720p)
	~300K+ clips / 400–700 classes
	General large-scale action recognition, pre-training
	TensorFlow, PyTorch
	I3D, SlowFast, ViViT
	~70–75% top-1
	Massive scale; suitable for pre-training and general tasks, not fine-grained; data decay due to YouTube links.

	UCF101
	RGB video
	25 FPS
	320×240
	13,320 clips / 101 classes
	Legacy benchmark, general action recognition
	OpenCV, Caffe, TensorFlow
	CNNs, Two-stream networks
	~85–90%
	Good for baseline testing and efficiency evaluation; limited diversity; older architecture support.

	HMDB51
	RGB video
	30 FPS
	320×240 (low quality)
	6,766 clips / 51 classes
	Film-based action recognition, robustness testing
	MATLAB, Python libraries
	SVM, 3D CNNs, LSTM
	~60–70%
	Used to test robustness on poor quality and diverse scenes; small scale and video noise make it difficult for fine-grained analysis.

	Sensor-Based (WISDM, etc.)
	Accelerometer, Gyroscope (time-series)
	20–100 Hz
	N/A
	~10,000–100,000+ samples / 6–18 classes
	Fitness tracking, health monitoring, embedded systems
	Scikit-learn, TensorFlow
	Decision Trees, LSTMs, CNNs
	~85–95%
	Lightweight, privacy-preserving use in wearables; lacks visual context, sensitive to placement and user variability.



3.3.2 User-generated datasets 
A significant trend in the reviewed literature is the creation of new, specialized datasets designed to overcome the limitations of existing benchmarks and address specific research questions. These datasets are typically developed in-house by research teams to fill a specific gap. For example, the HADE dataset was created to provide a more diverse set of real-world actions than found in many benchmarks [20]. The HDIA dataset was developed specifically for privacy-preserving elderly care, using IR cameras and wearable sensors to avoid capturing identifiable information [3]. Similarly, the NOL-18 Exercise dataset was created to provide labeled data for the specific task of counting exercise repetitions [16], and the CrossFit/Figure Skating datasets were built to enable fine-grained analysis of complex athletic movements [15].
The primary advantage of user-generated datasets is their high relevance to a specific problem, providing data that is much better suited for training specialized models. However, they are often smaller in scale than large benchmarks and may have inherent biases based on the specific collection environment and participant pool.

3.3.3 Summary on comparing HAR datasets 
In summary, notable advancements have been achieved in creating HAR datasets, contributing significantly to the progress of this field. A thorough examination of different datasets demonstrates substantial improvements in addressing complex human actions and interactions. However, challenges still need to be addressed, particularly in terms of dataset diversity and representativeness, as these factors can impact the universality and effectiveness of HAR systems. It is crucial to obtain datasets that encompass a wide range of human actions under various conditions. Future developments should focus on enhancing the comprehensiveness of datasets by prioritizing inclusivity, real-world complexity, and privacy-preserving data collection methods. This approach will further refine HAR technologies, resulting in more precise and adaptable systems, ultimately pushing the boundaries of what can be achieved in human action recognition.
3.4 Techniques/Algorithms
The progress in HAR is fundamentally driven by the evolution of the algorithms used to interpret sensor and video data. The reviewed literature showcases a clear trajectory from traditional machine learning to a diverse and sophisticated set of deep learning architectures.

3.4.1 Supervised learning:
Supervised learning remains the dominant paradigm in HAR, where models learn from labeled data. Traditional machine learning classifiers like Support Vector Machines (SVM) and Random Forests (RF) have demonstrated strong performance, particularly on sensor-based data where handcrafted features can be effective. For instance, [4] showed that these classical models can sometimes outperform deep learning models in cross-subject scenarios due to their robustness against overfitting to specific user characteristics. In the context of medical diagnostics, [8] also employed a range of ML classifiers, including Logistic Regression and Decision Trees, for stroke identification from neuroimages.

3.4.2 Human–Robot Interaction (HRI)
The unique challenge of HRI requires algorithms that go beyond simple classification to model intent and facilitate safe collaboration. A notable approach in this area moves away from standard supervised learning towards more complex decision-making frameworks. [6] proposed a novel method for Cobot action decision-making that integrates game theory with intuitionistic fuzzy sets. This allows the robot to model the human's bounded rationality including hesitation and subjective perceptions of risk to produce safer and more human-like collaborative behavior. This technique is crucial for scenarios where robots and humans must share a confined workspace.

3.4.3 Silhouette sequences
Using the 2D silhouette of a person as the primary input is a classic technique in HAR that remains relevant due to its privacy-preserving nature and computational efficiency. A modern and innovative take on this method is presented by [22], who developed a novel feature extraction technique called Polygon Coding. Their method involves Polygonizing the silhouette generated from a video frame and then encoding the geometric properties of the resulting polygon into a feature vector. This approach guarantees that feature vectors of equal length are generated from any action video, effectively solving the problem of variable-length sequences without requiring more complex sequence models like RNNs or Transformers.

3.4.4 Computational modeling
This area focuses on the interplay between algorithmic efficiency and hardware capability, a critical concern for real-world deployment. A key trend is the development of lightweight models designed for edge computing. For example, the GNet-FHO model was specifically designed for efficiency on wearable sensor data by using a Ghost Network architecture combined with a Fire-Hawk Optimizer for feature selection [5]. Similarly, [27] proposed the Lightweight Video Vision Transformer (LWV-ViT), which employs spatial-temporal pruning and a cross-temporal token interaction module to create an efficient model for online physical education teaching systems deployed on edge devices.
3.4.5 Graph-based approaches
With the rise of skeleton-based HAR, Graph Convolutional Networks (GCNs) have become a cornerstone technology, as they are naturally suited to model the graph structure of the human skeleton. The work by [7] introduces a Pose-Guided GCN (PG-GCN), a multi-modal framework that uses 2D pose information to guide the feature learning of a 3D skeleton-based GCN via a dynamic attention module. This explicitly fuses pose and skeleton data to create a more robust representation. In a more domain-specific application, [14] utilized GCNs to analyze the intricate relationships between skeletal joints for the specialized task of analyzing tennis training actions.

3.4.6 Deep learning architectures
The vast majority of modern HAR systems are built on various deep learning architectures.
•	CNNs and RNNs: Hybrid architectures combining Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM), are common for processing sensor data. These models, such as the Multichannel CNN-GRU [28] and the Deep CNN-LSTM with Self-Attention [25], use CNNs to extract spatial features from sensor channels and RNNs to model the temporal dependencies.
•	Transformers: The Transformer architecture has recently become dominant, especially for multimodal tasks. Its self-attention and cross-attention mechanisms make it exceptionally effective at fusing information from different sources. The SSRT model by [2] uses a transformer-based approach to fuse skeleton and RGB data for fine-grained HOI. [18] also use a Transformer, but for a different purpose: to learn an optimal 3D skeletal representation directly from 3D human meshes.
•	Specialized Networks: Other notable architectures include ResNet-SE, a deep residual network with a squeeze-and-excitation attention mechanism for complex activity recognition from wrist-worn sensors [26], and the DDC3N, a Doppler-driven 3D CNN designed for high-precision sports analytics [15].
3.5 Open challenges and limitations
Despite significant progress, the field of HAR still faces numerous open challenges and limitations that hinder the widespread deployment of robust, real-world systems. These challenges span the entire HAR pipeline, from data acquisition to model evaluation.

3.5.1 Data collection and pre-processing	
The foundation of any HAR system is its data, and this stage presents significant hurdles. A primary challenge is the sheer effort required for data collection and annotation, which is often manual, time-consuming, and expensive, especially for specialized domains like medical applications or fine-grained activity analysis [23]. Furthermore, raw sensor data is invariably affected by noise, environmental factors, and device-specific variations. The work by [29] provides a systematic analysis showing how fundamental image parameters like resolution, color space, and brightness can significantly and sometimes unpredictably alter model performance. Similarly, for sensor data, preprocessing steps like filtering and normalization are essential to create a clean signal suitable for model training [24].

3.5.2 Dataset modeling and configuration
A critical challenge in HAR is the "domain shift" or "generalization gap," where models perform well on the data they were trained on but fail when deployed on new, unseen subjects, environments, or devices. [4] demonstrate this explicitly, showing a significant performance drop in many deep learning models when subjected to a strict cross-subject evaluation. This highlights that models often overfit to the characteristics of the training subjects rather than learning the true underlying patterns of the activities themselves. The creation of diverse, large-scale datasets like HADE [20] and HDIA [3] is a direct response to this challenge, aiming to provide more varied data to train more robust and generalizable models.
Table 2: Summary of literature on HAR techniques
	Authors
	Contribution

	[6]
	Proposes a cobot action decision-making method based on intuitionistic fuzzy sets and game theory for HRC.

	[4]
	Compares cross-subject performance of traditional ML and deep learning models on HAR datasets.

	[30]
	Develops an angular features-based HAR system for real-world applications with subtle unit actions.

	[18]
	Learns a 3D skeletal representation from a Transformer architecture for action recognition.

	[28]
	Proposes a multichannel CNN-GRU model for sensor-based human activity recognition.

	[26]
	Develops a ResNet-SE channel attention-based deep residual network for complex activity recognition.

	[10]
	Creates an automatic detection pipeline for accessing the motor severity of Parkinson's disease.

	[25]
	Proposes a deep CNN-LSTM with a self-attention model for HAR using wearable sensors.

	[13]

	Proposes a framework for learning spatial affordances from 3D point clouds to map unseen human actions.

	[8]
	Develops a machine learning-based diagnostic model using neuroimages for stroke identification.

	[15]
	Proposes a Doppler-Driven 3D CNN (DDC3N) for HAR, with new datasets for CrossFit and Figure Skating.

	[17]
	Provides a comprehensive survey of RGB-based and skeleton-based HAR methods.

	[24]
	Proposes a multi-stream TCN-based approach with ECA-Net for sensor-based HAR.



3.5.3 The role of open-access and commercial tools in HAR
The development and deployment of HAR systems are significantly influenced by the availability of both open-source and commercial tools. Open-source software, such as OpenPose, has democratized the field by providing powerful, off-the-shelf tools for pose estimation, which are used as a foundational step in many modern HAR pipelines [11]. On the other hand, commercial hardware like the Microsoft Kinect sensor was instrumental in popularizing skeleton-based HAR by making 3D skeletal tracking widely accessible [9]. The challenge for researchers lies in navigating the trade-offs between these tools: open-source solutions offer flexibility and low cost but may require more technical expertise, while commercial tools provide robust, out-of-the-box solutions but can be expensive and less adaptable for specific research purposes.

3.5.4 Analyzing a dataset based on input from images or video frames
The analysis of video data presents several unique challenges. Processing every frame of a video is computationally intensive and can be inefficient, as many frames may be redundant. To address this, systems often employ methods to intelligently sample or segment videos. For example, the system by [16] specifically focuses on segmenting periodic physical activities to count repetitions, locating the start and end of each unit action. Another challenge is the inherent ambiguity in visual data; for instance, recognizing fine-grained human-object interactions often requires fusing RGB data with another modality, like skeleton data, to disambiguate similar-looking actions [2].

3.5.5 Metrics for performance evaluation
While accuracy is the most common metric, it can be misleading, especially for datasets with a significant class imbalance or for applications where certain types of errors are more costly than others. For example, in medical diagnosis, a false negative (failing to detect a condition) is often far more dangerous than a false positive. Consequently, researchers are increasingly using a more comprehensive suite of metrics, including precision, recall, and F1-score, to provide a more nuanced evaluation of model performance [5,8].
Table 3: A summary of literature on evaluation metrics
	Authors
	Datasets
	Evaluation Metrics

	[8]
	Custom CT Image Dataset
	Accuracy, Precision, Recall, F1-score, ROC, AUC

	[23]
	mHealth, PAMAP2, UCIDSADS
	Accuracy, F1-score, Confusion Matrix

	[5]
	WISDM, Motion Sense, UCI-HAR
	Accuracy, Precision, Recall, F1-score

	[12]
	StanWiFi, MultiEnvironment
	Accuracy, Precision, Recall, F1-score

	[2]
	Toyota Smarthome, ETRI-Activity3D
	Accuracy, Precision, Recall, F1-score



In specialized applications like stroke detection, even more advanced metrics like the Receiver Operating Characteristic (ROC) curve and the Area Under the Curve (AUC) are used to assess the diagnostic power of a model across different thresholds [8].

Table 4: A summary of HAR taxonomy
	S/N
	Techniques
	Application
	Explanation

	1. 
	Computational Modeling
	Dynamic
	Real-time FPGA-based devices can recognize human actions. Intelligent settings, human-machine communications, and security systems utilize this technology.

	2. 
	Silhouette Sequence Point Clouds
	Dynamic
	This approach analyzes the time sequence of the camera silhouettes. They have built action-based spaces. The activities and shape information were recognized using 3-D point clouds.

	3. 
	Graph-based approach
	Static
	Classification of human behavior based on graphs. This model maintains a complex spatial arrangement of the joints in the body by considering how they move and change over time.

	4. 
	Human motion understanding for HRI
	Dynamic
	New hardware for action recognition based on two-stream neural networks. This design delivers the same accuracy as existing baseline models with fewer operations.

	5. 
	Deep Learning Architectures
	Dynamic
	This includes various architectures like CNN-LSTM, GCNs, and Transformers to capture complex spatial and temporal patterns in HAR data.

	6. 
	Pre-trained CNNs
	Dynamic
	Combines class-based and instance-based success rates to assess transfer models. All class- and instance-based NASNet-Large parameterize the ABC-optimized CNN.



5. Conclusion and future work
This paper has presented a comprehensive review of the current trends and state-of-the-art in Human Action Recognition (HAR) systems, based on a systematic analysis of 30 research papers published between 2022 and 2025. Our findings reveal a field in rapid transition, moving from generalized, single-modality models toward highly specialized, multimodal systems designed for real-world deployment. The key evolutionary trends identified are the dominance of deep learning architectures, particularly GCNs and Transformers; the critical shift towards multimodal fusion to create more robust and context-aware systems; and a growing focus on solving domain-specific challenges in areas like healthcare, sports analytics, and human-robot interaction.
Throughout this review, we have seen that while significant progress has been made, several open challenges persist. These include the high computational cost of state-of-the-art models, the scarcity of large-scale, diverse, and unbiased datasets, and the critical problem of model generalization across unseen subjects and environments. These challenges, however, also illuminate a clear path forward. Based on the literature analyzed, the following are several potential and promising areas that can be explored in future research to advance the field of HAR.
•	While multimodal fusion is now a dominant trend, there is still significant room for innovation. Future work should move beyond simple concatenation or late-fusion techniques. Researchers should explore more sophisticated cross-attention mechanisms and co-attention models that allow different data streams (e.g., RGB, skeleton, sensor, audio) to dynamically and contextually influence each other's feature representation throughout the entire network pipeline. Developing novel Transformer-based architectures specifically designed for heterogeneous data fusion is a promising avenue. Furthermore, creating unified models that can seamlessly integrate a variable number of modalities, rather than being fixed to two or three, would represent a major breakthrough in flexibility.
•	The critical challenge of cross-subject and cross-dataset generalization remains largely unsolved. Future research must prioritize this issue. This includes developing new regularization techniques and domain generalization methods that explicitly aim to learn subject-invariant features. A key area for exploration is federated learning, where models could be trained on decentralized data from diverse users without compromising privacy, potentially leading to more robust and generalizable systems. Additionally, as HAR systems are deployed in sensitive areas like healthcare and surveillance, there is an urgent need to research and address algorithmic fairness and bias. Future work should focus on developing methods to detect and mitigate biases related to gender, age, skin tone, and physical ability to ensure these technologies are equitable and safe for all users.
•	The bottleneck of data scarcity, especially for specialized tasks, will continue to be a major challenge. While few-shot and zero-shot learning offer promising solutions, they are still in their early stages. A major direction for future research is the development of high-fidelity synthetic data generation pipelines. This involves not just creating realistic human models, but also simulating a wide range of action variations, environmental conditions, and sensor noise. Advanced Generative Adversarial Networks (GANs) and diffusion models could be used to generate vast, diverse, and automatically labeled datasets for both training and testing, significantly reducing the cost and effort of manual data collection.
•	The trend towards domain-specific applications will undoubtedly continue and deepen. Future research should focus on creating end-to-end systems for high-impact areas. In healthcare, this could mean developing interactive rehabilitation systems that provide real-time corrective feedback to patients. In HRI, the focus will be on creating cobots that can not only predict human intent but also understand social cues and adapt their behavior accordingly. For these systems to be practical, a strong emphasis must be placed on computational efficiency and the development of lightweight, optimized models that can run in real-time on edge devices with limited power and computational resources.
In conclusion, the field of Human Action Recognition is poised for significant advancements. By focusing on these future research directions—advancing multimodal fusion, prioritizing robustness and fairness, solving data scarcity through synthetic generation, and building specialized, efficient real-world systems—the research community can overcome the current challenges and unlock the full potential of HAR to create more intelligent, helpful, and safer environments.
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Appendix A
LIST OF ABBREVIATIONS
	Abbreviation
	Full Name

	HAR
	Human Action Recognition

	HOI
	Human-Object Interaction

	ML
	Machine Learning

	DL
	Deep Learning

	GCN
	Graph Convolutional Network

	CNN
	Convolutional Neural Network

	RNN
	Recurrent Neural Network

	LSTM
	Long Short-Term Memory

	GRU
	Gated Recurrent Unit

	IMU
	Inertial Measurement Unit

	IR
	Infrared

	CSI
	Channel State Information

	DTW
	Dynamic Time Warping

	S-SVM
	Structured Support Vector Machine

	GZSAR
	Generalized Zero-Shot Action Recognition

	LOSO
	Leave-One-Subject-Out

	PD
	Parkinson's Disease

	HRC
	Human-Robot Collaboration
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